Abstract

Stimulated Brillouin scattering properties in a single-mode tellurite glass fiber were studied using a cw laser with an operating wavelength of 1.54 µm. The Brillouin frequency shift vB and the gain linewidth Δv B were 7.882 GHz and 23.6 MHz, respectively. A Brillouin gain coefficient gB in the range of 1.47×10-10-2.16×10-10 m/W was measured. The higher gain coefficient of the tellurite fiber, together with its relatively low loss compared with other non-silica fibers, makes it a suitable candidate for realizing efficient, all-optical, slow-light devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).
  3. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers," Opt. Lett. 30, 1698-1700 (2005).
    [CrossRef] [PubMed]
  4. K. S. Abedin, "Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber," Opt. Express 14, 4037-4042 (2006).
    [CrossRef] [PubMed]
  5. S. Norcia, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, "Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals," Opt. Lett. 28, 1888-1890 (2003).
    [CrossRef] [PubMed]
  6. A. Loayssa, D. Benito, and M. J. Garde, "Optical carrier-suppression technique with a Brillouin-erbium fiber laser," Opt. Lett. 25, 197-199 (2000).
    [CrossRef]
  7. K. Y. Song, M. G. Herraez, and L. Thevenaz, "Observation of Pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  8. Y. Okawachi, J. E. Sharping, A. L. Gaeta, M. S. Bigelow, A. Schweinsberg, R. W. Boyd, Z. Zhu, and D. J. Gauthier, "Tunable all-optical delays via Brillouin slow light in an optical fiber," CLEO 2005, Baltimore, MD, CMCC3.
  9. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005).
    [CrossRef] [PubMed]
  10. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 - 203 (1994).
    [CrossRef]
  11. A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
    [CrossRef]
  12. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
    [CrossRef]
  13. V. V. Ravi. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
    [CrossRef]
  14. G. Ghosh, "Sellmeier coefficients and chromatic dispersions for some tellurite glasses," J. Am. Ceram. Soc. 78, 2828 - 2830 (1995).
    [CrossRef]
  15. D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 μm," Electron. Lett. 18, 495 - 496 (1982).
    [CrossRef]
  16. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011 - 1013 (1986).
    [CrossRef]
  17. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).
    [CrossRef] [PubMed]
  18. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
    [CrossRef]
  19. M. O. Van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
    [CrossRef]
  20. N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
    [CrossRef]
  21. K. Ogusu, H. Li, and M. Kitao, "Brillouin-gain coefficient of chalcogenide glasses," J. Opt. Soc. Am. B 21, 1302 - 1304 (2004).
    [CrossRef]
  22. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1," OFC2004, Postdeadline paper PDP26.
  23. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss and B. J. Eggleton, "Investigation of self-phase modulation based optical regenerator in single mode AsSe chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]
  24. M. González Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
    [CrossRef]
  25. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006)
    [CrossRef] [PubMed]
  26. C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber," OFC 2006, Postdeadline Paper PDP2.

2006 (3)

2005 (4)

2004 (1)

2003 (2)

2000 (1)

1998 (2)

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

1995 (1)

G. Ghosh, "Sellmeier coefficients and chromatic dispersions for some tellurite glasses," J. Am. Ceram. Soc. 78, 2828 - 2830 (1995).
[CrossRef]

1994 (2)

M. O. Van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 - 203 (1994).
[CrossRef]

1986 (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011 - 1013 (1986).
[CrossRef]

1982 (1)

D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 μm," Electron. Lett. 18, 495 - 496 (1982).
[CrossRef]

1979 (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
[CrossRef]

1973 (1)

N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
[CrossRef]

1972 (2)

Abedin, K. S.

Benito, D.

Boot, A. J.

M. O. Van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011 - 1013 (1986).
[CrossRef]

Cotter, D.

D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 μm," Electron. Lett. 18, 495 - 496 (1982).
[CrossRef]

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011 - 1013 (1986).
[CrossRef]

Dolfi, D.

Eggleton, B. J.

Fu, L. B.

Garde, M. J.

Ghosh, G.

G. Ghosh, "Sellmeier coefficients and chromatic dispersions for some tellurite glasses," J. Am. Ceram. Soc. 78, 2828 - 2830 (1995).
[CrossRef]

González Herráez, M.

Hasegawa, T.

Herraez, M. G.

Herráez, M. G.

Hotate, K.

Huignard, J.-P.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

Kanamori, T.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

Kikuchi, K.

Kitao, M.

Kobayashi, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

Lee, J. H.

Li, H.

Loayssa, A.

Mori, A.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

Moss, D. J.

Nagashima, T.

Niizeki, N.

N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
[CrossRef]

Nishida, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

Norcia, S.

Ogusu, K.

Ohara, S.

Ohishi, Y.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

Oikawa, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

Ono, H.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

Ravi, V. V.

Rochette, M.

Smith, R. G.

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 - 203 (1994).
[CrossRef]

Song, K. Y.

Stolen, R. H.

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
[CrossRef]

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

Sugimoto, N.

Ta’eed, V. G.

Tanemura, T.

Thevenaz, L.

Thévenaz, L.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011 - 1013 (1986).
[CrossRef]

Tonda-Goldstein, S.

Uchida, N.

N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
[CrossRef]

Van Deventer, M. O.

M. O. Van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 - 203 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 - 203 (1994).
[CrossRef]

Yamada, M.

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972).
[CrossRef]

Electron. Lett. (3)

A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er3+-doped fiber amplifiers," Electron. Lett. 34, 887 (1998).
[CrossRef]

D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 μm," Electron. Lett. 18, 495 - 496 (1982).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011 - 1013 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244 - 1246 (1998).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Ghosh, "Sellmeier coefficients and chromatic dispersions for some tellurite glasses," J. Am. Ceram. Soc. 78, 2828 - 2830 (1995).
[CrossRef]

J. Lightwave Technol. (1)

M. O. Van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 - 203 (1994).
[CrossRef]

Proceedings of IEEE (1)

N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973).
[CrossRef]

Other (4)

Y. Okawachi, J. E. Sharping, A. L. Gaeta, M. S. Bigelow, A. Schweinsberg, R. W. Boyd, Z. Zhu, and D. J. Gauthier, "Tunable all-optical delays via Brillouin slow light in an optical fiber," CLEO 2005, Baltimore, MD, CMCC3.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).

C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, "Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber," OFC 2006, Postdeadline Paper PDP2.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1," OFC2004, Postdeadline paper PDP26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measured transmission loss for tellurite glass fibers at different launched powers.

Fig. 2.
Fig. 2.

Optical spectra of output from tellurite glass fiber in the backward direction for different pump power levels.

Fig. 3.
Fig. 3.

Intensity of light backscattered from tellurite glass fibers as a function of pump power. Inset shows the plot in the linear scale.

Fig. 4.
Fig. 4.

RF spectrum of the beat signal obtained by heterodyne detection at a pump power of 630 mW.

Fig. 5.
Fig. 5.

Intensity of the amplified probe signal at the fiber output measured as a function of the modulation frequency fm.

Tables (1)

Tables Icon

Table 1. Comparison of optical properties of tellurite, bismuth and chalcogenide fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g B K ( P t h A eff ) L eff 21
g B = 2 π n 7 p 12 2 c λ P 2 ρ v a Δ V B = 2 π M 1 c λ P 2 Δ V B ,
Δ t d ( P P L eff ) = g B K A eff ( 2 π Δ V B ) .

Metrics