Abstract

We experimentally demonstrate an all-optical tunable delay line based on slow and fast light using soliton collision in an optical fiber. By varying the amplitude, wavelength, and number of the control soliton pulses, we accomplish both distortion-less slow and fast light generation and achieve the consecutive temporal shift up to 7.3ps for a 4.1ps-width pulse, which corresponds to the maximum delay-to-pulse-width ratio of 1.8.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. G. Herraez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13,82-88 (2005).
    [CrossRef] [PubMed]
  2. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13,6092-6098 (2005).
    [CrossRef] [PubMed]
  3. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13,6234-6249 (2005).
    [CrossRef] [PubMed]
  4. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13,7872-7877 (2005).
    [CrossRef] [PubMed]
  5. A. Hasegawa and Y. Kodama, Solitons in optical communications, (Oxford University Press, Oxford 1995).
  6. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralong distance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
    [CrossRef]
  7. S. R. Friberg, "Demonstration of colliding-soliton all-optical switching," Appl. Phys. Lett. 63, 429-431 (1993).
    [CrossRef]
  8. T. Okamawari, A. Hasegawa, and Y. Kodama, "Analyses of soliton interactions by means of a perturbed inversescattering transform," Phys. Rev. E 51,3203-3220 (1995).
  9. V. E. Zakharov and A. E. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).
  10. Y. Kodama and A. Hasegawa, "Effect of initial overlap on the propagation of optical solitons at different wavelengths," Opt. Lett. 16, 208-210 (1991).
    [CrossRef] [PubMed]

2005 (4)

1995 (1)

T. Okamawari, A. Hasegawa, and Y. Kodama, "Analyses of soliton interactions by means of a perturbed inversescattering transform," Phys. Rev. E 51,3203-3220 (1995).

1993 (1)

S. R. Friberg, "Demonstration of colliding-soliton all-optical switching," Appl. Phys. Lett. 63, 429-431 (1993).
[CrossRef]

1991 (2)

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralong distance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
[CrossRef]

Y. Kodama and A. Hasegawa, "Effect of initial overlap on the propagation of optical solitons at different wavelengths," Opt. Lett. 16, 208-210 (1991).
[CrossRef] [PubMed]

1972 (1)

V. E. Zakharov and A. E. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Dahan, D.

Eisenstein, G.

Evangelides, S. G.

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralong distance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
[CrossRef]

Friberg, S. R.

S. R. Friberg, "Demonstration of colliding-soliton all-optical switching," Appl. Phys. Lett. 63, 429-431 (1993).
[CrossRef]

Gaeta, A. L.

Gordon, J. P.

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralong distance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
[CrossRef]

Hasegawa, A.

T. Okamawari, A. Hasegawa, and Y. Kodama, "Analyses of soliton interactions by means of a perturbed inversescattering transform," Phys. Rev. E 51,3203-3220 (1995).

Y. Kodama and A. Hasegawa, "Effect of initial overlap on the propagation of optical solitons at different wavelengths," Opt. Lett. 16, 208-210 (1991).
[CrossRef] [PubMed]

Herraez, M. G.

Kodama, Y.

T. Okamawari, A. Hasegawa, and Y. Kodama, "Analyses of soliton interactions by means of a perturbed inversescattering transform," Phys. Rev. E 51,3203-3220 (1995).

Y. Kodama and A. Hasegawa, "Effect of initial overlap on the propagation of optical solitons at different wavelengths," Opt. Lett. 16, 208-210 (1991).
[CrossRef] [PubMed]

Mollenauer, L. F.

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralong distance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
[CrossRef]

Okamawari, T.

T. Okamawari, A. Hasegawa, and Y. Kodama, "Analyses of soliton interactions by means of a perturbed inversescattering transform," Phys. Rev. E 51,3203-3220 (1995).

Okawachi, Y.

Shabat, A. E.

V. E. Zakharov and A. E. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Sharping, J. E.

Song, K. Y.

Thevenaz, L.

van Howe, J.

Wang, Y.

Willner, A. E.

Xu, C.

Zakharov, V. E.

V. E. Zakharov and A. E. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Appl. Phys. Lett. (1)

S. R. Friberg, "Demonstration of colliding-soliton all-optical switching," Appl. Phys. Lett. 63, 429-431 (1993).
[CrossRef]

J. Lightwave Technol. (1)

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralong distance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. E (1)

T. Okamawari, A. Hasegawa, and Y. Kodama, "Analyses of soliton interactions by means of a perturbed inversescattering transform," Phys. Rev. E 51,3203-3220 (1995).

Sov. Phys. JETP (1)

V. E. Zakharov and A. E. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Other (1)

A. Hasegawa and Y. Kodama, Solitons in optical communications, (Oxford University Press, Oxford 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed all-optical TDL.

Fig. 2.
Fig. 2.

Normalized temporal shift ΔT/N versus frequency difference Δκ when Δη=0 and Δη opt.

Fig. 3.
Fig. 3.

Normarized temporal shift ΔT/N versus amplitude difference Δη.

Fig. 4.
Fig. 4.

Practical maximum temporal shift in an actual system when the limitation of Δκ≥(δκs +δκc ) is required.

Fig. 5.
Fig. 5.

Temporally shifted waveforms of signal soliton pulse observed by numerical simulation when the number of control pulses increases.

Fig. 6.
Fig. 6.

Experimental setup for slow light generation (I).

Fig. 7.
Fig. 7.

Experimentally observed autocorrelation traces with and without collision.

Fig. 8.
Fig. 8.

Autocorrelation traces shown in Fig. 7 after fitted.

Fig. 9.
Fig. 9.

Temporal shift versus wavelength difference.

Fig. 10.
Fig. 10.

Experimental setup for slow light generation (II).

Fig. 11.
Fig. 11.

Experimentally observed waveforms without control pulses (a) and with control pulses for the wavelength difference of 1.8nm (b) and 1.3nm (c).

Fig. 12.
Fig. 12.

Temporal shift versus wavelength difference.

Fig. 13.
Fig. 13.

Pulse width and TBP observed at the output of OBPF5 versus wavelength difference.

Fig. 14.
Fig. 14.

Experimental setup of case 1 for fast light generation (I).

Fig. 15.
Fig. 15.

Experimental setup of case 2 for fast light generation.

Fig. 16.
Fig. 16.

Temporal shift versus wavelength difference in cases 1 and 2.

Fig. 17.
Fig. 17.

Experimental setup for fast light generation (II).

Fig. 18.
Fig. 18.

Experimentally observed waveforms without control pulse (a) and with control pulses for the wavelength difference of 1.8nm (b) and 1.3nm (c).

Fig. 19.
Fig. 19.

Temporal shift versus wavelength difference.

Fig. 20.
Fig. 20.

Pulse width and TBP observed at the output of OBPF4 versus wavelength difference.

Tables (2)

Tables Icon

Table 1. The parameters @1550nm of NZ-DSF used in the experiment.

Tables Icon

Table 2. The parameters @1550nm of NZ-DSFs used in the experiment.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

i E z β 2 2 2 E t 2 + γ E 2 E = i g E .
q = E [ mW ] P 0 [ mW ] , T = 1.763 t [ ps ] t s [ ps ] , Z = z [ km ] z d [ km ] ,
i q Z + 1 2 2 q T 2 + q 2 q = i Γ q ,
{ P 0 [ mW ] = 262.5 ( λ [ μ m ] ) 3 D [ ps ( nm · km ) ] N 2 A eff [ × 10 9 W ] ( t s [ ps ] ) 2 , z d [ km ] = 0.6062 ( t s [ ps ] ) 2 ( λ [ μ m ] ) 2 D [ ps ( nm · km ) ] , Γ = 0.06979 α [ dB km ] ( t s [ ps ] ) 2 ( λ [ μ m ] ) 2 D [ ps ( nm · km ) ] .
q ( Z , T ) = η sech [ η ( T + κ Z T 0 ) ] exp { i κ T + i 2 ( η 2 κ 2 ) Z + i θ 0 } .
{ q s ( Z = 0 , T ) = sech ( T ) , q c ( Z = 0 , T ) = ( 1 + Δ η ) exp ( i Δ κ T ) n = 1 N sech [ ( 1 + Δ η ) ( T + Δ T 0 + ( n 1 ) Δ T i ) ] exp ( i Δ θ n ) .
q ( Z = 0 , T ) = q s ( Z = 0 , T ) + q c ( Z = 0 , T ) .
Δ T = N × ln [ ( Δ κ ) 2 + ( 2 + Δ η ) 2 ( Δ κ ) 2 + ( Δ η ) 2 ] ,
Δ η opt = 1 + ( Δ κ ) 2 1 .
Δ T max = N × ln [ 1 + 2 Δ η opt ] .

Metrics