Abstract

We report an efficient wavelength conversion via four-wavemixing in reverse biased silicon-on-isolator p-i-n rib waveguides and demonstrate, for the first time, the conversion of a high-speed optical pseudo-random bit sequence data at 40 Gb/s. Results give a wavelength conversion efficiency of -8.6dB using a 8cm long waveguide with clear open eye on the wavelength converted signal. Conversion efficiency as functions of pump power and bias voltages has also been investigated. We show a slope efficiency close to 2 as predicted by theory.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 - 966 (1996).
    [CrossRef]
  2. B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061 - 1073 (1998).
    [CrossRef]
  3. T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
    [CrossRef]
  4. D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56 - 61 (1998).
    [CrossRef]
  5. D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
    [CrossRef]
  6. K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
    [CrossRef]
  7. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
    [CrossRef]
  8. L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
  9. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
    [CrossRef]
  10. L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
  11. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
    [CrossRef] [PubMed]
  12. Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
    [CrossRef] [PubMed]
  13. T. K. Liang and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
    [CrossRef]
  14. O. Boyraz and B. Jalali, "Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Elect.Express 1, 429-434 (2004).
    [CrossRef]
  15. R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
    [CrossRef] [PubMed]
  16. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  17. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  18. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
    [CrossRef] [PubMed]
  19. H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006).
    [CrossRef] [PubMed]
  20. Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
    [CrossRef] [PubMed]
  21. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
    [CrossRef]
  22. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
    [CrossRef] [PubMed]
  23. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  24. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
    [CrossRef]
  25. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
    [CrossRef] [PubMed]
  26. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  27. M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
    [CrossRef]
  28. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
    [CrossRef]
  29. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  30. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
    [CrossRef] [PubMed]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).
  32. Y.-H. Kuo, H. Rong, and M. Paniccia, "High bandwidth silicon ring resonator Raman amplifier," IEEE 3rd International Conference on GroupIV Photonics, FB2, Ottawa, Sept. 2006.
  33. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2004).
    [CrossRef] [PubMed]

2006 (4)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef]

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006).
[CrossRef] [PubMed]

2005 (9)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
[CrossRef]

K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

2004 (10)

T. K. Liang and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Elect.Express 1, 429-434 (2004).
[CrossRef]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2004).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

1998 (3)

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061 - 1073 (1998).
[CrossRef]

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56 - 61 (1998).
[CrossRef]

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

1996 (2)

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 - 966 (1996).
[CrossRef]

Almeida, V. R.

Bjarklev, A.

K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
[CrossRef]

Bouchoule, S.

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

Boyraz, O.

O. Boyraz and B. Jalali, "Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Elect.Express 1, 429-434 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

Chinlon, L.

K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
[CrossRef]

Chow, K. K.

K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
[CrossRef]

Claps, R.

Cohen, O.

Dadap, J. I.

Danielsen, S. L.

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

Dimitropoulos, D.

Durhuus, T.

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

Espinola, R. L.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

Fang, A. W.

Foster, M. A.

M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Hak, D.

R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Jalali, B.

Joergensen, C.

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

Jones, R.

Kelly, A. E.

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

Kelly, T.

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56 - 61 (1998).
[CrossRef]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Kuo, Y. -H.

Kuo, Y.-H.

Lach, E.

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Liang, T. K.

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

Lipson, M.

Liu, A.

Marcenac, D.

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56 - 61 (1998).
[CrossRef]

Marcenac, D. D.

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

Mason, P. L.

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

McNab, S. J.

Mikkelsen, B.

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

Mukherjee, B.

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061 - 1073 (1998).
[CrossRef]

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Nesset, D.

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56 - 61 (1998).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Osgood, R. M.

Paniccia, M.

H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006).
[CrossRef] [PubMed]

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Raday, O.

Raghunathan, V.

Ramamurthy, B.

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061 - 1073 (1998).
[CrossRef]

Rong, H.

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Shu, C.

K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Takahashi, J.

Takahashi, M.

Tsang, H. K.

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Xu, Q.

Xu, S.

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Yoo, S. J. B.

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 - 966 (1996).
[CrossRef]

Appl. Phys. Lett. (4)

T. K. Liang and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Wavelength conversion in silicon using Raman induced four-wave mixing," Appl. Phys. Lett. 85, 34-36 (2004).
[CrossRef]

Electron. Lett. (1)

D. Nesset; D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, "Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier," Electron. Lett. 34, 107 - 108 (1998).
[CrossRef]

Express (1)

O. Boyraz and B. Jalali, "Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Elect.Express 1, 429-434 (2004).
[CrossRef]

IEEE Commun. Mag. (1)

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56 - 61 (1998).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061 - 1073 (1998).
[CrossRef]

IEEE J. Sel. Tops. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, Jun-ichi Takahashi; M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 - 240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

J. Lightwave Technol. (2)

T. Durhuus; B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 - 954 (1996).
[CrossRef]

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 - 966 (1996).
[CrossRef]

Nature (3)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

M. A. Foster1, A. C. Turner, J. E. Sharping1, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef]

Opt. Express (10)

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

H. Rong, Y. -H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006).
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and nonlinear optical processes in silicon waveguides," Opt. Express 12, 149-160 (2004).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photon. Technol. Lett. (2)

K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Photon. Technol. Lett. 17, 624 - 626 (2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber," Photon. Technol. Lett. 17, 1474-1476 (2005).
[CrossRef]

Other (5)

L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
[CrossRef]

L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic Press, New York, 1995).

Y.-H. Kuo, H. Rong, and M. Paniccia, "High bandwidth silicon ring resonator Raman amplifier," IEEE 3rd International Conference on GroupIV Photonics, FB2, Ottawa, Sept. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for 40 Gb/s wavelength conversion experiment

Fig. 2.
Fig. 2.

Spectrum of the output beam from an 8-cm long waveguide. Coupled pump power is 450 mW, and the conversion efficiency in this example is -8.6 dB. Clear 40GHz sidebands can be seen both from the input and converted signal.

Fig. 3.
Fig. 3.

Wavelength conversion efficiency as a function of pump power coupled into the waveguide for an 8 cm long double S-bend waveguide at different bias voltages. The dashed line indicates a theoretical FWM efficiency ignoring nonlinear losses.

Fig. 4.
Fig. 4.

Eye diagrams of the converted (right) signal in comparison with input (left) signal at 40Gb/s

Metrics