Abstract

Optically pumped organic thin-film lasers were fabricated by stacking top and bottom Bragg reflectors with an inner-cavity active layer between the reflectors. We observed single-longitudinal-mode laser operation at 555 nm by doping pyrromethene-567 dye into all the stacked layers. The threshold of the laser was 30% less than that of a laser operated with nondoped Bragg reflectors, which was in good agreement with calculations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
    [CrossRef] [PubMed]
  2. A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
    [CrossRef]
  3. T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, "A surface-emitting distributed-feedback dye laser fabricated by spin-coating organic polymers," in Proceedings of Conference on Lasers and Electro-Optics, 3 (Optical Society of America, Baltimore, 2005), pp. 2016-2018.
  4. L. Persano, A. Camposeo, P. D. Carro, E. Mele, R. Cingolani, and D. Pisignano, "Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition," Opt. Express 14, 1951-1956 (2006).
    [CrossRef] [PubMed]
  5. M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt. 26, 3474-3478 (1987).
    [CrossRef] [PubMed]
  6. J. Brandrup, E. H. Immergut, and E. A. Grulke, eds., Polymer Handbook, 4th ed. (John Wiley, New York, 1999), VI-571.
  7. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 16.

2006 (1)

2003 (1)

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

1998 (1)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

1987 (1)

Arena, A.

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Bulovic, V.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Camposeo, A.

Carro, P. D.

Cingolani, R.

Forrest, S. R.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Galvagno, S.

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Khalfin, V. B.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Kozlov, V. G.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Mele, E.

Neri, G.

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Patanè, S.

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Persano, L.

Pisignano, D.

Rizzo, G.

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Saitta, G.

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Sakuda, K.

Yamada, M.

Appl. Opt. (1)

J. Non-Cryst. Solids (1)

A. Arena, S. Patanè, G. Saitta, G. Rizzo, S. Galvagno, and G. Neri, "Photoluminescence from organic-inorganic multilayers based on sol-gel derived titania," J. Non-Cryst. Solids 331, 263-268 (2003).
[CrossRef]

Opt. Express (1)

Science (1)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, "Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities," Science 279, 553-555 (1998).
[CrossRef] [PubMed]

Other (3)

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, "A surface-emitting distributed-feedback dye laser fabricated by spin-coating organic polymers," in Proceedings of Conference on Lasers and Electro-Optics, 3 (Optical Society of America, Baltimore, 2005), pp. 2016-2018.

J. Brandrup, E. H. Immergut, and E. A. Grulke, eds., Polymer Handbook, 4th ed. (John Wiley, New York, 1999), VI-571.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997), Chap. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagrams of vertical-cavity organic lasers: (a) passive DBR laser and (b) active DBR laser.

Fig. 2.
Fig. 2.

Threshold gains as functions of pair number of high- and low-refractive-index layers in bottom DBR mirror with inner-cavity layer thicknesses of (a) 1λ and (b) 9λ. The top DBR mirror has 1.5 fewer pairs than the bottom DBR mirror.

Fig. 3.
Fig. 3.

PL spectra below lasing threshold: (a) passive DBR laser and (b) active DBR laser. The dotted curves represent the calculated transmission spectra of the passive vertical-cavity structure.

Fig. 4.
Fig. 4.

Input-output characteristics of passive DBR laser. The inset shows the lasing spectrum at 110 µJ/pulse.

Fig. 5.
Fig. 5.

Input-output characteristics of active DBR laser. The inset shows the lasing spectrum at 80 µJ/pulse.

Metrics