Abstract

In this Letter, we report the tuning of the emission wavelength of a single mode distributed feedback quantum cascade laser by modifying the mode effective refractive index using fluids. A fabrication procedure to encapsulate the devices in polymers for microfluidic delivery is also presented. The integration of microfluidics with semiconductor laser (optofluidics) is promising for new compact and portable lab-on-a-chip applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
    [CrossRef]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
    [CrossRef] [PubMed]
  3. A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
    [CrossRef]
  4. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
    [CrossRef]
  5. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
    [CrossRef]
  6. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
    [CrossRef]
  7. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
    [CrossRef]
  8. S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
    [CrossRef]
  9. A. Kosterev and F. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582 (2002).
    [CrossRef]
  10. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
    [CrossRef]
  11. J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005)
    [CrossRef] [PubMed]
  12. B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
    [CrossRef] [PubMed]
  13. J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
    [CrossRef]
  14. M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003).
    [CrossRef]
  15. D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
    [CrossRef]
  16. G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)
  17. Note that refractive indexes mentioned throughout this Letter correspond to the values known typically in the near-infrared (λ @ 2 μm). According to our calculations, the refractive index change due to absorption resonances is less than 0.2 for all the liquids used. This result was found by applying the Kramers-Kronig relations to transmission measurements obtained with the different fluids used.
  18. C.-B Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683 (2004)
    [CrossRef]
  19. C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
    [CrossRef]
  20. M. Lončar, B.G. Lee and F. Capasso, unpublished

2006

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

2005

J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005)
[CrossRef] [PubMed]

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

2004

C.-B Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683 (2004)
[CrossRef]

2003

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

2002

A. Kosterev and F. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582 (2002).
[CrossRef]

F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
[CrossRef]

2001

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

2000

D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
[CrossRef]

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

1995

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
[CrossRef]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
[CrossRef]

Blaser, S.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

Bour, D.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

Capasso, F.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
[CrossRef]

F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Charlton, C.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

Chen, J.Z.

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005)
[CrossRef] [PubMed]

Cho, A.

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Cho, A.Y.

F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
[CrossRef]

Colombelli, R.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
[CrossRef]

Corzine, S.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

Craig, C.B.

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Croitoru, N.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

Darvish, S. R.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

de Melas, F.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

Diehl, L.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

Dirisu, A.O.

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Evans, A.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

Faist, J.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Frank, J.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

Gini, E.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

Giovannini, M.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

Gmachl, C.

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
[CrossRef]

F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
[CrossRef]

Gmachl, C.F.

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005)
[CrossRef] [PubMed]

Hofler, G.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

Hofstetter, D.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
[CrossRef]

Howard, S.S.

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Hutchinson, A.

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Hvozdara, L.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

Inberg, A.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

Ingberg, D.E.

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

Jiang, X.

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

Kim, C.-B

C.-B Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683 (2004)
[CrossRef]

Kosterev, A.

A. Kosterev and F. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582 (2002).
[CrossRef]

Lendl, B.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

Liu, Z.

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005)
[CrossRef] [PubMed]

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

Loncar, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Maulini, R.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

Mizaikoff, B.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

Müller, A.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

Nguyen, J.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

Ostuni, E.

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

Qiu, Y.

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Razeghi, M.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

Rumala, Y.S.

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

Scherer, A.

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Schindler, R.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

Sirtori, C.

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Sivco, D.

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Sivco, D.L.

J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005)
[CrossRef] [PubMed]

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
[CrossRef]

Slivken, S.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

Song, S.

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

Straub, A.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
[CrossRef]

Su, C. B.

C.-B Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683 (2004)
[CrossRef]

Takayama, S.

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

Tittel, F.

A. Kosterev and F. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582 (2002).
[CrossRef]

Troccoli, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

Whistesides, G.M.

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

Wittmann, A.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

Yu, J. S.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

Zhu, J.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

Anal. Chem.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000)
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng.

G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)

Appl. Phys. Lett.

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006)
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006)
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006)
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995).
[CrossRef]

Electron. Lett.

J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005)
[CrossRef]

IEE Proc. Optoelectron.

C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003)
[CrossRef]

IEEE J. Quantum Electron.

A. Kosterev and F. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582 (2002).
[CrossRef]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000)
[CrossRef]

Meas. Sci. Technol.

C.-B Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683 (2004)
[CrossRef]

Opt. Express

Physics Today

F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002)
[CrossRef]

Science

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002)
[CrossRef] [PubMed]

Other

Note that refractive indexes mentioned throughout this Letter correspond to the values known typically in the near-infrared (λ @ 2 μm). According to our calculations, the refractive index change due to absorption resonances is less than 0.2 for all the liquids used. This result was found by applying the Kramers-Kronig relations to transmission measurements obtained with the different fluids used.

M. Lončar, B.G. Lee and F. Capasso, unpublished

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic cross section of the processed DFB-laser. The current is injected laterally from two Ti/Au contacts. The Bragg grating is etched in the top layer composing the waveguide and is exposed to air/liquid. Diagrams showing (b) the laser as bonded and mounted on a Cu-heatsink, (c) different parts entering into the fabrication of the liquid chamber (note that the dashed area in the SU-8 layer1 is removed during the fabrication to form the fluid reservoir) (d) a device after encapsulation. Note that the tubing is not shown for clarity. (e) Picture of an encapsulated device.

Fig. 2.
Fig. 2.

Optical spectra obtained with an encapsulated device without liquid at room temperature and different current level.

Fig. 3.
Fig. 3.

(a) Optical spectra obtained at a fixed current (4.1 A) at room temperature with different liquids in the fluid chamber. The refractive index of the fluids varied from 1.3 to 1.735. (b) Optical spectra shown on a log scale measured without fluid, with the liquid with n=1.53 and methanol.

Fig. 4.
Fig. 4.

Comparison between the peak position obtained experimentally from the data shown in Fig. 3(a) and the results of FDTD simulations.

Fig. 5.
Fig. 5.

(a) Voltage and output power vs. current curves obtained at room temperature with different liquids in the fluid chamber. Note that these data were obtained with an encapsulated DFB QCL different from the one used to produce the data shown in Fig. 2, 3 and 4.

Metrics