Abstract

The concept of a Microstructured Optical Fiber-based Surface Plasmon Resonance sensor with optimized microfluidics is proposed. In such a sensor plasmons on the inner surface of large metallized channels containing analyte can be excited by a fundamental mode of a single mode microstructured fiber. Phase matching between plasmon and a core mode can be enforced by introducing air filled microstructure into the fiber core, thus allowing tuning of the modal refractive index and its matching with that of a plasmon. Integration of large size microfluidic channels for efficient analyte flow together with a single mode waveguide of designable effective refractive index is attractive for the development of integrated highly sensitive MOF-SPR sensors operating at any designable wavelength.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V.M. Agranovich and D.L. Mills. Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces, (North-Holland, Amsterdam, 1982).
  2. E. Kretschmann and Z.H. Raether, Naturforschung23, 2135 (1993).
  3. R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213 (1993).
    [Crossref]
  4. M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
    [Crossref]
  5. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, “Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197 (1994).
    [Crossref] [PubMed]
  6. J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401 (1995).
    [Crossref]
  7. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
    [Crossref]
  8. A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
    [Crossref]
  9. J. Homola, R. Slavik, and J. Ctyroky, “Intreaction between fiber modes and surface plasmon wave: spectral properties,” Opt. Lett. 22, 1403 (1997).
    [Crossref]
  10. A. Diez, M.V. Andres, and J.L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95 (2001).
    [Crossref]
  11. M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
    [Crossref]
  12. D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216 (2004).
    [Crossref] [PubMed]
  13. D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227 (2006).
    [Crossref]
  14. H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
    [Crossref]
  15. J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
    [Crossref]
  16. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
    [Crossref]
  17. M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B 56, 189 (1999).
    [Crossref]
  18. B.D. Gupta and A.K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40 (2005).
    [Crossref]
  19. S.J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83 (1993).
    [Crossref]
  20. M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419 (2006).
    [Crossref] [PubMed]
  21. M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 211641 (2006).
    [Crossref]
  22. P.J.A Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1593 (2006).
    [Crossref]
  23. J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211 (2000).
    [Crossref]
  24. L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
    [Crossref]

2006 (5)

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227 (2006).
[Crossref]

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
[Crossref]

M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419 (2006).
[Crossref] [PubMed]

M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 211641 (2006).
[Crossref]

P.J.A Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1593 (2006).
[Crossref]

2005 (1)

B.D. Gupta and A.K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40 (2005).
[Crossref]

2004 (1)

2003 (1)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
[Crossref]

2001 (1)

A. Diez, M.V. Andres, and J.L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95 (2001).
[Crossref]

2000 (1)

J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211 (2000).
[Crossref]

1999 (2)

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B 56, 189 (1999).
[Crossref]

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
[Crossref]

1997 (2)

A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
[Crossref]

J. Homola, R. Slavik, and J. Ctyroky, “Intreaction between fiber modes and surface plasmon wave: spectral properties,” Opt. Lett. 22, 1403 (1997).
[Crossref]

1996 (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
[Crossref]

1995 (2)

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401 (1995).
[Crossref]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
[Crossref]

1994 (1)

1993 (3)

R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213 (1993).
[Crossref]

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

S.J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83 (1993).
[Crossref]

Abdelmalek, F.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
[Crossref]

Agranovich, V.M.

V.M. Agranovich and D.L. Mills. Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces, (North-Holland, Amsterdam, 1982).

Al-Bader, S.J.

Aleggret, S.

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

Alonso, R.

Alonso-Chamarro, J.

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

Andres, M.V.

A. Diez, M.V. Andres, and J.L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95 (2001).
[Crossref]

Bergey, E.J.

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Cinteza, L.O.

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Cruz, J.L.

A. Diez, M.V. Andres, and J.L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95 (2001).
[Crossref]

Ctyroky, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
[Crossref]

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
[Crossref]

J. Homola, R. Slavik, and J. Ctyroky, “Intreaction between fiber modes and surface plasmon wave: spectral properties,” Opt. Lett. 22, 1403 (1997).
[Crossref]

Diez, A.

A. Diez, M.V. Andres, and J.L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95 (2001).
[Crossref]

Ecke, W.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
[Crossref]

Gagnaire, H.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
[Crossref]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
[Crossref]

Garces, I.

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

Gupta, B.D.

B.D. Gupta and A.K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40 (2005).
[Crossref]

Harrington, J.A.

J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211 (2000).
[Crossref]

Homola, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
[Crossref]

J. Homola, R. Slavik, and J. Ctyroky, “Intreaction between fiber modes and surface plasmon wave: spectral properties,” Opt. Lett. 22, 1403 (1997).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401 (1995).
[Crossref]

Imtaar, M.

Jorgenson, R.C.

R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213 (1993).
[Crossref]

Kabashin, A.

M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 211641 (2006).
[Crossref]

M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419 (2006).
[Crossref] [PubMed]

Kondoh, J.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
[Crossref]

Kretschmann, E.

E. Kretschmann and Z.H. Raether, Naturforschung23, 2135 (1993).

Lopez, R.

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

Lowe, C.R.

A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
[Crossref]

Luna-Moreno, D.

Manikova, Z.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
[Crossref]

Mateo, J.

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

Matsuiand, Y.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
[Crossref]

Menges, B.

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B 56, 189 (1999).
[Crossref]

Millington, R.B.

A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
[Crossref]

Mills, D.L.

V.M. Agranovich and D.L. Mills. Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces, (North-Holland, Amsterdam, 1982).

Mittler-Neher, S.

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B 56, 189 (1999).
[Crossref]

Monzon-Hernandez, D.

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227 (2006).
[Crossref]

D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216 (2004).
[Crossref] [PubMed]

Ohulchanskyy, T.

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Pandey, R.K.

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Payne, F.P.

A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
[Crossref]

Pelayo, J.

Piliarik, M.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
[Crossref]

Prasad, P.N.

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Raether, Z.H.

E. Kretschmann and Z.H. Raether, Naturforschung23, 2135 (1993).

Ronot-Trioli, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
[Crossref]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
[Crossref]

Sahoo, Y.

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Sazio, P.J.A

P.J.A Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1593 (2006).
[Crossref]

Sharma, A.K.

B.D. Gupta and A.K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40 (2005).
[Crossref]

Skorobogatiy, M.

M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 211641 (2006).
[Crossref]

M. Skorobogatiy and A. Kabashin, “Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide,” Opt. Express 14, 8419 (2006).
[Crossref] [PubMed]

Slavik, R.

Subias, J.

Sugimoto, M.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
[Crossref]

Suzuki, H.

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
[Crossref]

Talavera, D.

Tornos, J.

Trouillet, A.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
[Crossref]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
[Crossref]

Tubb, A.J.C.

A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
[Crossref]

Usbeck, K.

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
[Crossref]

Veillas, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
[Crossref]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
[Crossref]

Vidal, M.B.

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

Villatoro, J.

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227 (2006).
[Crossref]

D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216 (2004).
[Crossref] [PubMed]

Villuendas, F.

Weisser, M.

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B 56, 189 (1999).
[Crossref]

Yee, S.S.

R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213 (1993).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Skorobogatiy and A. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 211641 (2006).
[Crossref]

Fiber Integr. Opt. (1)

J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

H. Suzuki, M. Sugimoto, Y. Matsuiand, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Meas. Sci. Technol. 17, 1547 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Opt. Quantum Electron. 31, 927 (1999).
[Crossref]

Pure Appl. Opt. (2)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1995).
[Crossref]

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227 (1996).
[Crossref]

Science (1)

P.J.A Sazio, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1593 (2006).
[Crossref]

Sens. Actuators B (9)

A.J.C. Tubb, F.P. Payne, R.B. Millington, and C.R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71 (1997).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401 (1995).
[Crossref]

R.C. Jorgenson and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213 (1993).
[Crossref]

M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455 (1993).
[Crossref]

M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B 56, 189 (1999).
[Crossref]

B.D. Gupta and A.K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40 (2005).
[Crossref]

A. Diez, M.V. Andres, and J.L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95 (2001).
[Crossref]

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance based on a polarization-maintaining optical fiber,” Sens. Actuators B 90, 236 (2003).
[Crossref]

D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227 (2006).
[Crossref]

Other (3)

V.M. Agranovich and D.L. Mills. Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces, (North-Holland, Amsterdam, 1982).

E. Kretschmann and Z.H. Raether, Naturforschung23, 2135 (1993).

L.O. Cinteza, T. Ohulchanskyy, Y. Sahoo, E.J. Bergey, R.K. Pandey, and P.N. Prasad, “Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy,” Mol. Pharm 3, 415 (2006)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

a) Schematic of a MOF-based SPR sensor. Holes in the second layer are filled with analyte and metallized for plasmon excitation. Air filled holes in the first layer enable guiding in the higher refractive index fiber core, while at the same time controlling coupling strengths between the core mode and a plasmon. Small air filled hole in the fiber core is used to lower the refractive index of a core guided mode to facilitate phase matching with a plasmon. b) Field distribution of a core mode at the first plasmon resonance at λ=560nm. c) Field distribution of a core mode at the second plasmon resonance at λ=950nm. d) Alternative schematic featuring larger microfluidic channel. e) Field distribution of a core mode at the plasmon resonance at λ=650nm for crossection d).

Fig. 2.
Fig. 2.

Calculated loss spectra of the MOF core guided mode exhibiting three loss peaks corresponding to the excitation of various plasmonic modes in the metallized holes. Black solid line -na =1.33, blue doted line -na =1.34. For comparison, red dashed-line shows the confinement loss of a core guided mode in the absence of a metal coating.

Fig. 3.
Fig. 3.

a) Calculated loss spectra of the first plasmonic peak for 30nm, 40nm and 50nm thicknesses of a gold coating. b) Sensitivity of the MOF-based SPR sensor for the 30nm, 40nm, 50nm and 65 nm thicknesses of a gold coating.

Metrics