Abstract

We present a versatile and accurate chromatic dispersion measurement method for single mode optical fibers over a wide spectral range (200 nm) using a spectral domain white light interferometer. This technique is based on spectral interferometry with a Mach-Zehnder interferometer setup and a broad band light source. It takes less than a second to obtain a spectral interferogram for a few tens of centimeter length fiber sample. We have demonstrated that the relative group velocity, the chromatic dispersion and the dispersion slope of a sample fiber can be obtained very accurately regardless of the zero-dispersion wavelength (ZDW) of a sample after frequency dependent optical phase was directly retrieved from a spectral interferogram. The measured results with our proposed method were compared with those obtained with a conventional time-domain dispersion measurement method. A good agreement between those results indicates that our proposed method can measure the chromatic dispersion of a short length optical fiber with very high accuracy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Diddams and J. C. Diels, "Dispersion measurements with white light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996).
    [CrossRef]
  2. C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
    [CrossRef]
  3. L. G Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958 -966 (1985).
    [CrossRef]
  4. J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
    [CrossRef]
  5. K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
    [CrossRef]
  6. D. D Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
    [CrossRef]
  7. J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36,338-340 (2000).
    [CrossRef]
  8. R. Cella and W. Wood, "Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry," Proceedings of the Sixth Optical Fibre Measurement Conference, 207-210 (2001)
  9. J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
    [CrossRef]
  10. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28,1230-1232 (2003).
    [CrossRef] [PubMed]
  11. P. Hlubina, T. Martynkien, and W. Urbañczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003).
    [PubMed]
  12. P. Hlubina, "White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibers," Opt. Commun. 218, 283-289 (2003).
    [CrossRef]
  13. A. B. Vakhtin, K. A. Peterson, W. R Wood, and D. J. Kane, "Differential spectal interferometery and imaging technique for biomedical applications," Opt. Lett. 28, 1332-1334 (2003).
    [CrossRef] [PubMed]
  14. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultra high resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
    [CrossRef] [PubMed]
  15. D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  16. K. Takada, I. Yokohama, K. Chida, and J. Noda, "New measurement system for fault location in optical waveguide devices based on an interfermetric technique," Appl. Opt. 26, 1603-1605 (1987).
    [CrossRef] [PubMed]
  17. C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling in Fourier transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  18. D. Hammer, A. Welch, G. Noojin, R. Thomas, D. Stolarski, and B. Rockwell, "Spectrally resolved white-light interferometry for measurement of ocular dispersion," J. Opt. Soc. Am. A 16, 2092-2102 (1999).
    [CrossRef]
  19. V. N. Kumer and D. N. Rao, "Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive material," J. Opt. Soc. Am. B 12, 1559-1563 (1995).
    [CrossRef]
  20. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  21. G. Häusler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  23. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  24. P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
    [CrossRef]
  25. M. Galli, F. Marabelli, and G. Guizzetti, "Direct measurement of refractive-index dispersion of transparent media by white-light inerferometry," Appl. Opt. 42. 3910-3914 (2003).
    [CrossRef] [PubMed]
  26. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2004).
    [CrossRef]

2004

2003

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

2001

D. D Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
[CrossRef]

2000

J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36,338-340 (2000).
[CrossRef]

C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling in Fourier transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
[CrossRef]

1999

J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
[CrossRef]

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

D. Hammer, A. Welch, G. Noojin, R. Thomas, D. Stolarski, and B. Rockwell, "Spectrally resolved white-light interferometry for measurement of ocular dispersion," J. Opt. Soc. Am. A 16, 2092-2102 (1999).
[CrossRef]

1998

G. Häusler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

1996

1995

V. N. Kumer and D. N. Rao, "Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive material," J. Opt. Soc. Am. B 12, 1559-1563 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1992

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

1991

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1989

P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

1987

1985

L. G Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958 -966 (1985).
[CrossRef]

Bajraszewski, T.

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultra high resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Belabas, N.

Brendel, J.

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

Chang, W.

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chemals, D. S.

J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
[CrossRef]

Chida, K.

Cohen, L. G

L. G Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958 -966 (1985).
[CrossRef]

Diddams, S.

Diels, J. C.

Dorrer, C. D.

Drexler, W.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Galli, M.

Gehler, J.

J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36,338-340 (2000).
[CrossRef]

Gision, N.

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

Guizzetti, G.

Hammer, D.

Hasch, T.

J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
[CrossRef]

Hattori, K.

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hermann, B.

Hickernell, R. K.

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hlubina, P.

P. Hlubina, T. Martynkien, and W. Urbañczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003).
[PubMed]

P. Hlubina, "White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibers," Opt. Commun. 218, 283-289 (2003).
[CrossRef]

Horiguchi, M.

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

Huang, D.

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Jacson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Joffre, M.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kane, D. J.

Kitagawa, T.

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Kumer, V. N.

Le, T.

Leitgeb, R.

Likforman, J. P.

Lin, C. P.

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lin, F.

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

Lindner, M. W.

G. Häusler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Marabelli, F.

Marquezini, M. V

J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
[CrossRef]

Martynkien, T.

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Noda, J.

Noojin, G.

Pedersen, R. J. S.

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

Peterson, K. A.

Peucheret, C.

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

Rao, D. N.

Rochford, K. B.

D. D Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
[CrossRef]

Rockwell, B.

Schuman, J. S.

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shellee, D. D

D. D Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
[CrossRef]

Spahn, W.

J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36,338-340 (2000).
[CrossRef]

Stingl, A.

Stinson, W. G.

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stolarski, D.

Swang, E. A

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takada, K.

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

K. Takada, I. Yokohama, K. Chida, and J. Noda, "New measurement system for fault location in optical waveguide devices based on an interfermetric technique," Appl. Opt. 26, 1603-1605 (1987).
[CrossRef] [PubMed]

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Thomas, R.

Tignon, J.

J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
[CrossRef]

Unterhuber, A.

Urbañczyk, W.

Vakhtin, A. B.

Wax, A.

Welch, A.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

Wood, W. R

Yamada, M.

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

Yang, C.

Yokohama, I.

Zbinden, H.

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

Appl. Opt.

Electron. Lett.

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36,338-340 (2000).
[CrossRef]

IEEE J. Quantum Electron.

J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

D. D Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
[CrossRef]

J. Biomed. Opt.

G. Häusler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

L. G Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958 -966 (1985).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

P. Hlubina, "White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibers," Opt. Commun. 218, 283-289 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Science

D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

R. Cella and W. Wood, "Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry," Proceedings of the Sixth Optical Fibre Measurement Conference, 207-210 (2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for the chromatic dispersion measurement of an optical fiber

Fig. 2.
Fig. 2.

(a). A measured spectral interferogram obtained by an OSA and (b). its close-up view at about 1550 nm wavelength

Fig. 3.
Fig. 3.

(a). Regularly spaced relative phase and calculated relative group delay in the frequency domain and (b). The chromatic dispersion coefficient and the second order dispersion coefficient of a sample fiber with our proposed method

Fig. 4.
Fig. 4.

(a). A measured spectral interferogram measured by an OSA and (b). its close-up view near 1550 nm wavelength.

Fig. 5.
Fig. 5.

(a). The calculated phase spectra, and its polynomial fitting curve. (b) The chromatic dispersion coefficient and the second order dispersion coefficient of a DSF sample.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( f ) = E ( f ) 2 + a 2 E ( f ) 2 + 2 a E ( f ) 2 cos ( ϕ ( f ) )
ϕ ( f ) = β ( f ) · L 2 π τ 0 · f
1 2 π d ϕ ( f ) d f = τ g ( f ) τ 0
τ g ( f ) = L v g ( f ) = L 2 π · d β ( f ) d f
ϕ ( f ) 2 π · [ ϕ 0 + ϕ 1 f + ϕ 2 f 2 2 + ϕ 3 f 3 6 ]
τ g ( f ) τ 0 + ϕ 1 + ϕ 2 f + ϕ 3 f 2 2
D ( λ ) c L [ ϕ 2 λ 2 + c ϕ 3 λ 3 ]

Metrics