Abstract

We present two approaches to speckle tracking for optical coherence tomography (OCT)-based elastography, one appropriate for small speckle motions and the other for large, rapid speckle motions. Both approaches have certain advantages over traditional cross-correlation based motion algorithms. We apply our algorithms to quantifying the strain response of a mechanically inhomogeneous, bilayered polyvinyl alcohol tissue phantom that is subjected to either small or large dynamic compressive forces while being imaged with a spectral domain OCT system. In both the small and large deformation scenarios, the algorithms performed well, clearly identifying the two mechanically disparate regions of the phantom. The stiffness ratio between the two regions was estimated to be the same for the two scenarios and both estimates agreed with the expected stiffness ratio based on earlier mechanical testing. No single numerical approach is appropriate for all cases and the experimental conditions dictate the proper choice of speckle shift algorithm for OCT-based elastography studies.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ophir, I. Cespedes, H, Ponnekanti, Y. Yadzi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991).
    [CrossRef] [PubMed]
  2. S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
    [PubMed]
  3. I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
    [CrossRef] [PubMed]
  4. B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
    [PubMed]
  5. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).
  6. D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
    [CrossRef] [PubMed]
  7. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
    [CrossRef] [PubMed]
  8. K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
    [CrossRef]
  9. J. Lorenzen,  et al. "MR elastography of the breast: preliminary clinical results," Rofo. Fortschr Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 174, 830-834 (2002).
    [CrossRef] [PubMed]
  10. E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
    [PubMed]
  11. D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002).
    [CrossRef] [PubMed]
  12. S. J. Kirkpatrick, and B. W. Brooks, "Micromechanical behavior of cortical bone as inferred from laser speckle data," J. Biomed. Mater. Res.,  39, 373-379 (1998).
    [CrossRef] [PubMed]
  13. S. L. Jacques, and S. J. Kirkpatrick, "Acoustically modulated speckle imaging of biological tissues," Opt. Lett. 23, 879-881 (1998).
    [CrossRef]
  14. S. J. Kirkpatrick, and M. J. Cipolla, "High resolution imaged laser speckle strain gauge for vascular applications," J. Biomed. Opt. 5, 62-71 (2000).
    [CrossRef] [PubMed]
  15. S. J. Kirkpatrick, M. T. Hinds, and D. D. Duncan, "Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold," Tissue Eng. 9, 645-656 (2003).
    [CrossRef] [PubMed]
  16. S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004).
    [CrossRef] [PubMed]
  17. J. M. Schmitt, "OCT elastography: Imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998).
    [CrossRef] [PubMed]
  18. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004).
    [CrossRef] [PubMed]
  19. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
    [CrossRef] [PubMed]
  20. A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
    [CrossRef]
  21. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
    [CrossRef]
  22. H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
    [CrossRef] [PubMed]
  23. D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001).
    [CrossRef] [PubMed]
  24. D. D. Duncan, and S. J. Kirkpatrick, "Performance analysis of a maximum likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002).
    [PubMed]
  25. B. Jähne, and Haußecker, Computer Vision and Applications: A Guide for Students and Practitioners (Academic Press, San Diego, 2000).
  26. Y. C. Fung, and P. Tong, Classical and Computational Solid Mechanics (World Scientific, Singapore, 2001).
  27. B. Jähne, Practical Handbook on Image Processing for Scientific Applications (CRC Press, Boca Raton, 1997).
  28. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006).
    [CrossRef]
  29. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. vanGemert and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
    [CrossRef] [PubMed]
  30. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11,3490-3497 (2003).
    [CrossRef] [PubMed]
  31. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izzat, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  32. R. K. Wang and Z. H. Ma, "A practical approach to eliminate the autocorrelation noise for volume rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
    [CrossRef] [PubMed]
  33. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22,1811-1813 (1997).
    [CrossRef]
  34. C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005).
    [CrossRef]

2006 (4)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

R. K. Wang and Z. H. Ma, "A practical approach to eliminate the autocorrelation noise for volume rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef] [PubMed]

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
[CrossRef]

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
[CrossRef] [PubMed]

2005 (2)

C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005).
[CrossRef]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

2004 (3)

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (4)

J. Lorenzen,  et al. "MR elastography of the breast: preliminary clinical results," Rofo. Fortschr Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 174, 830-834 (2002).
[CrossRef] [PubMed]

D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002).
[CrossRef] [PubMed]

S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
[PubMed]

D. D. Duncan, and S. J. Kirkpatrick, "Performance analysis of a maximum likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002).
[PubMed]

2001 (3)

D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001).
[CrossRef] [PubMed]

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
[PubMed]

2000 (3)

S. J. Kirkpatrick, and M. J. Cipolla, "High resolution imaged laser speckle strain gauge for vascular applications," J. Biomed. Opt. 5, 62-71 (2000).
[CrossRef] [PubMed]

D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
[CrossRef] [PubMed]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

1998 (4)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

S. J. Kirkpatrick, and B. W. Brooks, "Micromechanical behavior of cortical bone as inferred from laser speckle data," J. Biomed. Mater. Res.,  39, 373-379 (1998).
[CrossRef] [PubMed]

S. L. Jacques, and S. J. Kirkpatrick, "Acoustically modulated speckle imaging of biological tissues," Opt. Lett. 23, 879-881 (1998).
[CrossRef]

J. M. Schmitt, "OCT elastography: Imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998).
[CrossRef] [PubMed]

1997 (3)

1993 (1)

I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

1991 (1)

J. Ophir, I. Cespedes, H, Ponnekanti, Y. Yadzi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991).
[CrossRef] [PubMed]

Bishop, J.

D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
[CrossRef] [PubMed]

Boppart, S. A.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
[CrossRef] [PubMed]

Bouma, B. E.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22,1811-1813 (1997).
[CrossRef]

Brezinski, M. E.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
[CrossRef]

Brooks, B. W.

S. J. Kirkpatrick, and B. W. Brooks, "Micromechanical behavior of cortical bone as inferred from laser speckle data," J. Biomed. Mater. Res.,  39, 373-379 (1998).
[CrossRef] [PubMed]

Cense, B.

Cespedes, E. I.

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Cespedes, I.

I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

J. Ophir, I. Cespedes, H, Ponnekanti, Y. Yadzi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991).
[CrossRef] [PubMed]

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004).
[CrossRef] [PubMed]

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004).
[CrossRef] [PubMed]

Chen, Z. P.

Choma, M. A.

Cipolla, M. J.

S. J. Kirkpatrick, and M. J. Cipolla, "High resolution imaged laser speckle strain gauge for vascular applications," J. Biomed. Opt. 5, 62-71 (2000).
[CrossRef] [PubMed]

Cochlin, D. L.

D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002).
[CrossRef] [PubMed]

Dargatz, M.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Devi, C. U.

C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005).
[CrossRef]

Duncan, D. D.

S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004).
[CrossRef] [PubMed]

S. J. Kirkpatrick, M. T. Hinds, and D. D. Duncan, "Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold," Tissue Eng. 9, 645-656 (2003).
[CrossRef] [PubMed]

D. D. Duncan, and S. J. Kirkpatrick, "Performance analysis of a maximum likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002).
[PubMed]

D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001).
[CrossRef] [PubMed]

el-Gabry, E. A.

E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
[PubMed]

Ermet, H.

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Fang, L.

S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004).
[CrossRef] [PubMed]

Fruger, M.

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Fujimoto, J. G.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22,1811-1813 (1997).
[CrossRef]

Ganatra, R. H.

D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002).
[CrossRef] [PubMed]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Gomella, L. G.

E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
[PubMed]

Griffiths, D. F.

D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002).
[CrossRef] [PubMed]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

Halpern, E. J.

E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
[PubMed]

Heuser, L.

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Hiltasky, K. M.

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Hinds, M. T.

S. J. Kirkpatrick, M. T. Hinds, and D. D. Duncan, "Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold," Tissue Eng. 9, 645-656 (2003).
[CrossRef] [PubMed]

Holz, D.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Iftima, N.

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Iftimia, N.

Izzat, J.

Jacques, S. L.

Jensen, A.

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Kaazempur-Mofrad, B. E.

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Kaazempur-Mofrad, M. R.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Kaazempur-Mofrad, M.R.

Kallel, F.

S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
[PubMed]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

Kamm, R. D.

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Karl, W. C.

Khalil, A. S.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004).
[CrossRef] [PubMed]

S. J. Kirkpatrick, M. T. Hinds, and D. D. Duncan, "Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold," Tissue Eng. 9, 645-656 (2003).
[CrossRef] [PubMed]

D. D. Duncan, and S. J. Kirkpatrick, "Performance analysis of a maximum likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002).
[PubMed]

D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001).
[CrossRef] [PubMed]

S. J. Kirkpatrick, and M. J. Cipolla, "High resolution imaged laser speckle strain gauge for vascular applications," J. Biomed. Opt. 5, 62-71 (2000).
[CrossRef] [PubMed]

S. J. Kirkpatrick, and B. W. Brooks, "Micromechanical behavior of cortical bone as inferred from laser speckle data," J. Biomed. Mater. Res.,  39, 373-379 (1998).
[CrossRef] [PubMed]

S. L. Jacques, and S. J. Kirkpatrick, "Acoustically modulated speckle imaging of biological tissues," Opt. Lett. 23, 879-881 (1998).
[CrossRef]

Ko, H.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
[CrossRef] [PubMed]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

Lorenzen, J.

J. Lorenzen,  et al. "MR elastography of the breast: preliminary clinical results," Rofo. Fortschr Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 174, 830-834 (2002).
[CrossRef] [PubMed]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Lorenzen, M.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

Ma, Z. H.

R. K. Wang and Z. H. Ma, "A practical approach to eliminate the autocorrelation noise for volume rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef] [PubMed]

MacNeill, B.

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Magnant, C. M.

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Maklad, N.

I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Malekafzali, A.

Milner, T. E.

Nadkarni, S.

Nassif, N.

Nelson, J. S.

Ophir, J.

S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
[PubMed]

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

J. Ophir, I. Cespedes, H, Ponnekanti, Y. Yadzi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991).
[CrossRef] [PubMed]

Park, B. H.

Patel, N. A.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
[CrossRef]

Pennanen, M.

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Pierce, M. C.

Plewes, D. B.

D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
[CrossRef] [PubMed]

Ponnekanti, H.

I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Rogowska, J.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
[CrossRef]

Samani, A.

D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
[CrossRef] [PubMed]

Sarunic, M. V.

Schmitt, J. M.

Schrader, D.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Sciarretta, J.

D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
[CrossRef] [PubMed]

Shishkov, M.

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Shiskkow, M.

Sinkus, R.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Sood, A. K.

C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005).
[CrossRef]

Souchon, R.

S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
[PubMed]

Spratt, S. R.

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Srinivas, S.

Srinivasan, S.

S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
[PubMed]

Stack, R.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
[CrossRef] [PubMed]

Starke, C.

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Strup, S. E.

E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
[PubMed]

Tan, W.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

vanGemert, M. J.

Vasu, R. M.

C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005).
[CrossRef]

Wang, R. K.

R. K. Wang and Z. H. Ma, "A practical approach to eliminate the autocorrelation noise for volume rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

Wang, X. J.

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

White, B. R.

Yang, C.

Zuurbier, R. A.

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Ann Biomed. Eng. (1)

A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004).
[CrossRef]

Ann. Biomed. Eng. (1)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

Clin. Radiol. (1)

D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002).
[CrossRef] [PubMed]

Heart (1)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006).
[CrossRef]

J. Biomed. Mater. Res. (1)

S. J. Kirkpatrick, and B. W. Brooks, "Micromechanical behavior of cortical bone as inferred from laser speckle data," J. Biomed. Mater. Res.,  39, 373-379 (1998).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

S. J. Kirkpatrick, and M. J. Cipolla, "High resolution imaged laser speckle strain gauge for vascular applications," J. Biomed. Opt. 5, 62-71 (2000).
[CrossRef] [PubMed]

S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004).
[CrossRef] [PubMed]

D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001).
[CrossRef] [PubMed]

C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005).
[CrossRef]

Oncology (1)

E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001).
[PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Med. Biol. (3)

R. K. Wang and Z. H. Ma, "A practical approach to eliminate the autocorrelation noise for volume rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef] [PubMed]

D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000).
[CrossRef] [PubMed]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Radiology (1)

B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997).
[PubMed]

Rofo. Fortschr Geb. Rontgenstr. Neuen Bildgeb. Verfahr. (1)

J. Lorenzen,  et al. "MR elastography of the breast: preliminary clinical results," Rofo. Fortschr Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 174, 830-834 (2002).
[CrossRef] [PubMed]

Tissue Eng. (1)

S. J. Kirkpatrick, M. T. Hinds, and D. D. Duncan, "Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold," Tissue Eng. 9, 645-656 (2003).
[CrossRef] [PubMed]

Tissue Engineering (1)

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006).
[CrossRef] [PubMed]

Ultrason. Imaging (4)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).

J. Ophir, I. Cespedes, H, Ponnekanti, Y. Yadzi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991).
[CrossRef] [PubMed]

S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002).
[PubMed]

I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001).
[CrossRef]

Other (3)

B. Jähne, and Haußecker, Computer Vision and Applications: A Guide for Students and Practitioners (Academic Press, San Diego, 2000).

Y. C. Fung, and P. Tong, Classical and Computational Solid Mechanics (World Scientific, Singapore, 2001).

B. Jähne, Practical Handbook on Image Processing for Scientific Applications (CRC Press, Boca Raton, 1997).

Supplementary Material (6)

» Media 1: AVI (3700 KB)     
» Media 2: AVI (2848 KB)     
» Media 3: AVI (2312 KB)     
» Media 4: AVI (9230 KB)     
» Media 5: AVI (1746 KB)     
» Media 6: AVI (2362 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(2.25 MB) OCT video sequence of the bi-layered tissue phantom under compression showing small deformations (9.0 MB version).

Fig. 2.
Fig. 2.

(1.7 MB) Movie of strain development in the bi-layered tissue phantom as the phantom was compressed.

Fig. 3.
Fig. 3.

Neighborhood operation on the elastogram of cumulative strain. Figure 3(a). (left) is the elastogram of the total cumulative strain as determined by the pixel-by-pixel speckle motion estimator. Figure 3(b). (center) is an enlarged picture of the 40×40 pixel convolution kernel used in the neighborhood operation. The kernel was taken directly from gray-scale values within the small box outlined in Figure 3(a). Figure 3(c). (right) is the final featurebased elastogram encoded to display the relative cumulative strains in the different layers of the tissue phantom. The highest strain in the less-stiff region was normalized to unity. The mechanical distinction between the two layers is evident and the interfacial region is quite visible (greenish-blue).

Fig. 4.
Fig. 4.

Video sequences of the real time OCT structural image (a, 3.6 MB), velocity map (b, 2.7 MB), and strain rate map (c, 2.3 MB) of the bi-layer phantom during the dynamic loading, respectively. The OCT image was coded as gray-scale from 20 (black) to 50dB (White), the velocity was color coded with dark blue representing -120 µm/s (minimum) and purple-red representing +120 µm/s (maximum), and the strain rate map was color coded with dark blue representing -0.25 s-1 and purple red representing +0.25 s-1. The physical size of the images is 1.2×2.5 mm.

Fig. 5.
Fig. 5.

Integrated time varying (a) velocity (µm/s), (b) strain rate (s-1), (c) displacement (µm), and (d) strain (%) maps, respectively, of the tissue phantom subjected to 8 loading cycles and then followed by a 5 s rest period.

Fig. 6.
Fig. 6.

(a). Displacement and (b). strain profiles plotted against time compared with the synchronized separate measurements of actual displacement [top curve in (a)] and force [bottom curve in (b)] applied to the phantom, respectively. Rest of curves from bottom to top are the depth profiles at z=0.29 mm (blue) and 0.55 mm (red), respectively.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ε k 2 = i j [ g ( x i + f x , z j + f z , k + 1 )
g ( x i f x , z j f z , k 1 ) ] 2 .
ε k 2 = i j [ f x g x ( x i , z j , k ) + f z g z ( x i , z j , k ) + g t ( x i , z j , k ) ] 2 ,
g x = 1 2 x [ g ( x i , z j , k 1 ) + g ( x i , z j , k + 1 ) ]
g z = 1 2 z [ g ( x i , z j , k 1 ) + g ( x i , z j , k + 1 ) ]
g t = 1 2 [ g ( x i , z j , k + 1 ) g ( x i , z j , k 1 ) ] .
g x g x g x g z g z g x g z g z f x f z = g x g t g z g t ,
ε k ( x ¯ ) 2 = + w ( x ¯ x ¯ ) [ ( g ) T f ¯ + g t ] 2 d x ¯ .
( g ) T f ¯ + g t = 0 ,
I d ( υ ) = S ( υ ) [ 1 + R ( τ ) d τ + 2 R self + 2 R ( τ ) cos ( 2 π υ τ + ϕ 0 ) d τ ]
I d ( υ ) = 2 S ( υ ) R ( τ ) cos ( 2 π υ τ + ϕ 0 ) d τ .
I ( z ) = F T [ I d ( υ ) ] = A ( z ) exp ( i Φ ( z ) ) .
Δ Φ ( z , t ) = 2 n k Δ d ( z ) ,
Δ d ( z , t ) = Δ Φ ( z , t ) λ 4 π n .
v ( z , t ) = Δ Φ ( z , t ) λ 4 π n Δ t .
ε . ( z , t ) = v ( z , t ) z 0 = Δ ϕ ( z , t ) λ 4 π n z 0 Δ t
d ( z ) = 0 T Δ d ( z , t ) d t = 0 T Δ Φ ( x , t ) λ 4 π n d t
ε ( z ) = 0 T ε . ( z , t ) d t = 0 T Δ Φ ( z , t ) λ 4 π n z 0 Δ t d t

Metrics