Abstract

We introduce a new high-speed Fourier-domain optical coherence tomography (FD-OCT) scheme based on a stretched pulse supercontinuum source. A wide-band short pulse of a supercontinuum source of which output spectrum spanned a wavelength range from 1,200 nm to 1,550 nm was stretched to a long pulse of 70-ns duration by using a dispersive fiber due to the group-velocity dispersion, and it was used directly as frequency-swept light for FD-OCT. The OCT spectral interferogram was acquired in the time domain and converted into the spectral domain by the pre-calibrated time-to-wavelength relation. Using this stretched-pulse OCT (SP-OCT) scheme, we have demonstrated an ultra-high-speed axial-line scanning rate of 5 MHz. The axial resolution of 8 µm was achieved without re-calibration of the sweep characteristic owing to the passive nature of the frequency-sweeping mechanism.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  3. S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  4. R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005),
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-2165 (2003).
    [CrossRef] [PubMed]
  6. R. Huber, M. Wojtkowski, K. Taira and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  7. R. Huber, M. Wojtkowski and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  8. S. R. Chinn, E. A. Swanson and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  9. B. Golubovic, B. E. Bouma, G. J. Tearney and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
    [CrossRef]
  10. F. Lexer, C. K. Hitzenberger, A. F. Fercher and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997).
    [CrossRef]
  11. R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  12. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  13. Y. C. Tong, L. Y. Chan and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
    [CrossRef]
  14. J. Chou, Y. Han and B. Jalali, "Time-wavelength spectroscopy for chemical sensing," Photon. Technol. Lett. 16, 1140-1142 (2004).
    [CrossRef]
  15. S. Moon and D. Y. Kim, "Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a disersion-shifted fiber," Opt. Express 14, 270-278 (2006).
    [CrossRef] [PubMed]
  16. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, "Frequency-resolved optical grating and single-shot spectral measurements reveal fine structure in microstructured-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  17. S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  18. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  19. R. Huber, DesmondC. Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]

2006

2005

2004

J. Chou, Y. Han and B. Jalali, "Time-wavelength spectroscopy for chemical sensing," Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

2003

2002

1997

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Apolonski, A.

Bizheva, K.

Boudoux, C.

Bouma, B. E.

Cense, B.

Chan, L. Y.

Y. C. Tong, L. Y. Chan and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chinn, S. R.

Choma, M.

Chou, J.

J. Chou, Y. Han and B. Jalali, "Time-wavelength spectroscopy for chemical sensing," Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

de Boer, J. F.

Desmond, R.

Drexler, W.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gu, X.

Han, Y.

J. Chou, Y. Han and B. Jalali, "Time-wavelength spectroscopy for chemical sensing," Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Iftimia, N.

Izatt, J.

Jalali, B.

J. Chou, Y. Han and B. Jalali, "Time-wavelength spectroscopy for chemical sensing," Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

Kim, D. Y.

Kimmel, M.

Knight, J. C.

Kulhavy, M.

Leitgeb, R.

Lexer, F.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Moon, S.

O’Shea, P.

Park, B. H.

Pierce, M. C.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sarunic, M.

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shreenath, A. P.

St. Russell, P.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Taira, K.

Tearney, B. J.

Tearney, G. J.

Tong, Y. C.

Y. C. Tong, L. Y. Chan and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Trebino, R.

Tsang, H. K.

Y. C. Tong, L. Y. Chan and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wojtkowski, M.

Xu, L.

Yang, C.

Yun, S. H.

Zeek, E.

Appl. Opt.

Electron. Lett.

Y. C. Tong, L. Y. Chan and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997).
[CrossRef]

Opt. Express

R. Leitgeb, C. K. Hitzenberger and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

S. H. Yun, B. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-2165 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005),
[CrossRef] [PubMed]

S. Moon and D. Y. Kim, "Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a disersion-shifted fiber," Opt. Express 14, 270-278 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

Opt. Lett.

R. Huber, DesmondC. Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, "Frequency-resolved optical grating and single-shot spectral measurements reveal fine structure in microstructured-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

S. R. Chinn, E. A. Swanson and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser," Opt. Lett. 22, 1704-1706 (1997).
[CrossRef]

Photon. Technol. Lett.

J. Chou, Y. Han and B. Jalali, "Time-wavelength spectroscopy for chemical sensing," Photon. Technol. Lett. 16, 1140-1142 (2004).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic principle of the time-wavelength-domain spectrum measurement technique: The amplitude of a wide-band pulse is acquired in the time domain after being stretched by a dispersive fiber with the pre-calibrated data of the time-to-wavelength conversion.

Fig. 2.
Fig. 2.

(a). Spectrum of the filtered supercontinuum after passing through the 20-km DSF and (b) the measured relative time delays according to the wavelengths.

Fig. 3.
Fig. 3.

(a). Schematic diagram of the experimental setup and (b) an example of the oscilloscope trace captured with a single reflection point at the sample position.

Fig. 4.
Fig. 4.

Measured reflection profile of a ~20-µm thick transparent plastic film placed on a thick glass plate.

Fig. 5.
Fig. 5.

(a). PSF of a -15-dB reflection point and (b). the system noise with no optical input in dB.

Fig. 6.
Fig. 6.

(a). Obtained tomographic image (50 A-lines) and (b) a microscope image of lint-free paper. The data of the tomogram was acquired within a period of 10 µs with an A-line scan rate of 5 MHz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ ( λ ) = τ 0 + L · λ 0 λ D ( λ ) d λ
Δ τ L D ( λ ) · Δ λ
s ( λ ) ε ( λ ) Δ λ = h v · Q ( τ ) η q · ( Δ τ L D ( λ ) ) 1 = h v L D ( λ ) η q · i ( τ ) .
E output = T r ( t ) P ( t ) · e j ( z " k ( t ) ω t ) + T s ( t ) P ( t ) · e j ( ( z " + 2 z ) k ( t ) ω t ) · r e j ϕ
i ( t ) = η ( t ) q h v ( t ) [ T r ( t ) P ( t ) + T s ( t ) P ( t ) r 2 + 2 T r ( t ) · T s ( t ) · r P ( t ) cos ( 2 k ( t ) z + φ ) ] .
δ τ ( δ τ sc 2 + δ τ pd 2 ) 1 2
δ λ ( λ ) Δ λ Δ τ = δ τ = δ τ L D ( λ ) .
Δ z eff λ c 2 4 · δ λ = λ c 2 L D ( λ ) 4 · δ τ

Metrics