Abstract

We demonstrate that in near field imaging, interaction between light and sample can be divided into two main areas: the true near field and the contrast near field domain. We performed extensive numerical simulations in order to identify the limits of these areas, and to investigate contrast near field imaging in which much easier propagation calculation can be achieved. Finally, we show an application with terahertz axonal imaging.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
    [CrossRef] [PubMed]
  2. Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
    [CrossRef]
  3. D. Marks and P.S. Carney, "Near-field diffractive elements," Opt. Lett. 30,1870-1872 (2005).
    [CrossRef] [PubMed]
  4. S.I. Bozhevolnyi and B. Vohnsen,"Near-Field Optical Holography," Phys. Rev. Lett. 77,3351 (1996).
    [CrossRef] [PubMed]
  5. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, "Hierarchy in optical nearfields and its application to memory retrieval," Opt. Express 13,23, 9265-9271 (2005), http://www.opticsexpress.org/abstract.cfm?id=86211
    [CrossRef] [PubMed]
  6. D. Molenda, G. Colas des Francs, U. C. Fischer, N. Rau, A. Naber, "High-resolution mapping of the optical near-field components at a triangular nano-aperture," Opt. Express 26,23, 10688-10696 (2005), http://www.opticsexpress.org/abstract.cfm?id=86673
    [CrossRef]
  7. <other>. Comsol, Comsol Inc., Burlington, MA.</other>
  8. M. A. Bhatti,"Fundamental Finite Element Analysis and Applications: With Mathematica and Matlab Computations,"(J. Wiley & Sons,) (2005)
  9. M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
    [CrossRef]
  10. J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B. 73, (2006).
    [CrossRef]
  11. J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
    [CrossRef] [PubMed]
  12. M. Born, E. Wolf, "Principles of Optics", (Cambridge Univ. Press, Cambridge, U.K.), 6th Ed. (1997)
  13. H.A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66,163-182 (1944).
    [CrossRef]
  14. R.E. English, Jr., and N. George, "Diffraction from a small square aperture: approximate aperture fields," J. Opt. Soc. Am. A 5,No. 2 (1988).
    [CrossRef]
  15. P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25,no 43009 (2004).
  16. M.C. Beard, G.M. Turner and C.A. Schmuttenmaer, "Progress towards two-dimensional biomedical imaging with THz spectroscopy," Phys. Med. Biol. 47,3841-3846 (2002).
    [CrossRef] [PubMed]
  17. A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
    [CrossRef]
  18. H.T. Chen, R. K., and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83,3009 (2003).
    [CrossRef]
  19. K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84,2 (2003).
  20. R.S. Decca, H.D. Drew and K.L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope," Appl. Phys. Lett. 70, (15) (1997).
    [CrossRef]

2006 (2)

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B. 73, (2006).
[CrossRef]

J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25,no 43009 (2004).

2003 (4)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

H.T. Chen, R. K., and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83,3009 (2003).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84,2 (2003).

2002 (2)

M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
[CrossRef]

M.C. Beard, G.M. Turner and C.A. Schmuttenmaer, "Progress towards two-dimensional biomedical imaging with THz spectroscopy," Phys. Med. Biol. 47,3841-3846 (2002).
[CrossRef] [PubMed]

1997 (2)

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

R.S. Decca, H.D. Drew and K.L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope," Appl. Phys. Lett. 70, (15) (1997).
[CrossRef]

1996 (1)

S.I. Bozhevolnyi and B. Vohnsen,"Near-Field Optical Holography," Phys. Rev. Lett. 77,3351 (1996).
[CrossRef] [PubMed]

1988 (1)

R.E. English, Jr., and N. George, "Diffraction from a small square aperture: approximate aperture fields," J. Opt. Soc. Am. A 5,No. 2 (1988).
[CrossRef]

1944 (1)

H.A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66,163-182 (1944).
[CrossRef]

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Barkan, A.

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84,2 (2003).

Beard, M.C.

M.C. Beard, G.M. Turner and C.A. Schmuttenmaer, "Progress towards two-dimensional biomedical imaging with THz spectroscopy," Phys. Med. Biol. 47,3841-3846 (2002).
[CrossRef] [PubMed]

Berry, E.

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

Bethe, H.A.

H.A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66,163-182 (1944).
[CrossRef]

Bozhevolnyi, S.I.

S.I. Bozhevolnyi and B. Vohnsen,"Near-Field Optical Holography," Phys. Rev. Lett. 77,3351 (1996).
[CrossRef] [PubMed]

Carney, P.S.

Chen, H.T.

H.T. Chen, R. K., and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83,3009 (2003).
[CrossRef]

Cho, G. C.

P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25,no 43009 (2004).

Davidov, D.

M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
[CrossRef]

Decca, R.S.

R.S. Decca, H.D. Drew and K.L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope," Appl. Phys. Lett. 70, (15) (1997).
[CrossRef]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Drew, H.D.

R.S. Decca, H.D. Drew and K.L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope," Appl. Phys. Lett. 70, (15) (1997).
[CrossRef]

Duewer, F.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Empson, K.L.

R.S. Decca, H.D. Drew and K.L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope," Appl. Phys. Lett. 70, (15) (1997).
[CrossRef]

English, R.E.

R.E. English, Jr., and N. George, "Diffraction from a small square aperture: approximate aperture fields," J. Opt. Soc. Am. A 5,No. 2 (1988).
[CrossRef]

Fitzgerald, A.J.

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

Frenkel, A.

M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
[CrossRef]

Gallot, G.

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B. 73, (2006).
[CrossRef]

J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
[CrossRef] [PubMed]

George, N.

R.E. English, Jr., and N. George, "Diffraction from a small square aperture: approximate aperture fields," J. Opt. Soc. Am. A 5,No. 2 (1988).
[CrossRef]

Golosovsky, M.

M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
[CrossRef]

Han, P. Y.

P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25,no 43009 (2004).

Hirose, N.

Homer-vanniasinkam, S.

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Maniv, E.

M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
[CrossRef]

Marks, D.

Martin, J.-L

J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
[CrossRef] [PubMed]

Masson, J.-B

J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
[CrossRef] [PubMed]

Masson, J.-B.

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B. 73, (2006).
[CrossRef]

Miles, R.E.

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

Ming, N.-B

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Mittleman, D. M.

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84,2 (2003).

Molenda, D.

D. Molenda, G. Colas des Francs, U. C. Fischer, N. Rau, A. Naber, "High-resolution mapping of the optical near-field components at a triangular nano-aperture," Opt. Express 26,23, 10688-10696 (2005), http://www.opticsexpress.org/abstract.cfm?id=86673
[CrossRef]

Naruse, M.

Nomura, W.

Ohtsu, M.

Sauviat, M.-P

J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
[CrossRef] [PubMed]

Schmuttenmaer, C.A.

M.C. Beard, G.M. Turner and C.A. Schmuttenmaer, "Progress towards two-dimensional biomedical imaging with THz spectroscopy," Phys. Med. Biol. 47,3841-3846 (2002).
[CrossRef] [PubMed]

Schultz, P. G.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Turner, G.M.

M.C. Beard, G.M. Turner and C.A. Schmuttenmaer, "Progress towards two-dimensional biomedical imaging with THz spectroscopy," Phys. Med. Biol. 47,3841-3846 (2002).
[CrossRef] [PubMed]

Vohnsen, B.

S.I. Bozhevolnyi and B. Vohnsen,"Near-Field Optical Holography," Phys. Rev. Lett. 77,3351 (1996).
[CrossRef] [PubMed]

Wang, K.

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84,2 (2003).

Wei, T.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Xiang, X.-D.

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Yatsui, T.

Zhang, X.-C.

P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25,no 43009 (2004).

Zinov’ev, N.N.

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

H.T. Chen, R. K., and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83,3009 (2003).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84,2 (2003).

R.S. Decca, H.D. Drew and K.L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope," Appl. Phys. Lett. 70, (15) (1997).
[CrossRef]

J. Biol. Phys (1)

A.J. Fitzgerald, E. Berry, N.N. Zinov’ev, S. Homer-vanniasinkam, R.E. Miles, J.M. Chamberlain andM.A. Smith,"Catalogue Of Human Tissue Optical Properties At Terahertz Frequencies," J. Biol. Phys 29,123-128 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

R.E. English, Jr., and N. George, "Diffraction from a small square aperture: approximate aperture fields," J. Opt. Soc. Am. A 5,No. 2 (1988).
[CrossRef]

Nature biotechnology (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter and E. Ammann, "Nearfield optics: from subwavelength illumination to nanometric shadowing, " Nature biotechnology 21,1378-1386 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, M. Ohtsu, "Hierarchy in optical nearfields and its application to memory retrieval," Opt. Express 13,23, 9265-9271 (2005), http://www.opticsexpress.org/abstract.cfm?id=86211
[CrossRef] [PubMed]

D. Molenda, G. Colas des Francs, U. C. Fischer, N. Rau, A. Naber, "High-resolution mapping of the optical near-field components at a triangular nano-aperture," Opt. Express 26,23, 10688-10696 (2005), http://www.opticsexpress.org/abstract.cfm?id=86673
[CrossRef]

Opt. Lett. (2)

P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett. 25,no 43009 (2004).

D. Marks and P.S. Carney, "Near-field diffractive elements," Opt. Lett. 30,1870-1872 (2005).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M.C. Beard, G.M. Turner and C.A. Schmuttenmaer, "Progress towards two-dimensional biomedical imaging with THz spectroscopy," Phys. Med. Biol. 47,3841-3846 (2002).
[CrossRef] [PubMed]

Phys. Rev. (1)

H.A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66,163-182 (1944).
[CrossRef]

Phys. Rev. B. (1)

J.-B. Masson and G. Gallot, "Coupling between surface plasmons in subwavelength hole arrays," Phys. Rev. B. 73, (2006).
[CrossRef]

Phys. Rev. Lett. (1)

S.I. Bozhevolnyi and B. Vohnsen,"Near-Field Optical Holography," Phys. Rev. Lett. 77,3351 (1996).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

J.-B Masson, M.-P Sauviat, J.-L Martin and G. Gallot, "Ionic contrast terahertz near field imaging of axonal water fluxes," Proc. Natl. Acad. Sci. USA 103,4808-4812 (2006).
[CrossRef] [PubMed]

Science (1)

Y. Lu, T. Wei, F. Duewer, Y. Lu, N.-B Ming, P. G. Schultz, and X.-D. Xiang, "Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-TipMicrowave Near-FieldMicroscope," Science 276,2004-2006 (1997).
[CrossRef]

Trans. Instr. Meas. (1)

M. Golosovsky, E. Maniv, D. Davidov and A. Frenkel, "Near-Field of a Scanning Aperture Microwave Probe: A 3-D Finite Element Analysis," IEEE.Trans. Instr. Meas. 51,1090 (2002).
[CrossRef]

Other (3)

M. Born, E. Wolf, "Principles of Optics", (Cambridge Univ. Press, Cambridge, U.K.), 6th Ed. (1997)

<other>. Comsol, Comsol Inc., Burlington, MA.</other>

M. A. Bhatti,"Fundamental Finite Element Analysis and Applications: With Mathematica and Matlab Computations,"(J. Wiley & Sons,) (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of near field imaging with aperture

Fig. 2.
Fig. 2.

Example for a spherical sample of normalized size 0.2 of the evolution of ∇ M and Δ with normalized distance L/D. Three domains have been pointed out: the true near field domain (TNF), the contrast near field domain (CNF), and the far field domain (FF). The red lines are the exponential fits in the CNF domain. The green lines are FF references.

Fig. 3.
Fig. 3.

Evolution of the normalized distance Lc /D versus a/D. The point color is related to D/λ: black for 1/3, red for 1/4, green for 1/5, blue for 1/6, cyan for 1/7, magenta for 1/8, yellow for 1/9. The black line is the linear fit of the simulations. The shape of points is related to the simulation, circles for ∇ M and squares for Δ

Fig. 4.
Fig. 4.

Evolution of ∇ M and Δ with the normalized displacement distance (L-Lc )/D, for 3 aperture sizes: λ/3 (red), λ/6 (green), λ/10 (blue). For each aperture size 6 values of a/D are calculated: 0.05 (circle), 0.1 (square), 0.15 (up triangle),0.2 (down triangle),0.4 (left triangle), 0.5 (right triangle). The black line is the exponential fit of the simulation data and the green line is the FF value. On both fits the characteristic distance of the exponential is D/10.

Fig. 5.
Fig. 5.

Evolution of the normalized electric field (along incident polarization) in the hole with the normalized position, when the sample is in the TNF domain (black), and in the CNF domain (red). On both curves the sample is centered aperture.

Fig. 6.
Fig. 6.

Experimental setup. Terahertz generation and detection with photoconductive antenna. A femtosecond pulse generates terahertz pulses, which propagate through the subwavelength aperture and sample, and which are detected in amplitude by the detector antenna.

Fig. 7.
Fig. 7.

Evolution of the normalized transmitted electric field versus the axon position in TNF conditions (A, L=80µm) and with CNF conditions (B, L=140µm)). The black dots are the experimental data, the red line is the full 3D FEM simulation fit, and the green line is the GFP fit.

Metrics