Abstract

Photodarkening is recognized as a potentially important limiting factor on the lifetime and reliability of many Yb-doped fiber lasers and amplifiers. In particular, a photodarkening process attributed to the formation of photoinduced structural transformations can induce excess loss in the doped glass core of the fiber, resulting in reduced output power efficiency. Yet, quantifiable measurement techniques of this phenomenon have been scarce in the literature to date. Here we present a fast, simple and repeatable method to measure and compare the photodarkening rate caused by the formation of photoinduced structural transformations from Yb-doped single-mode fibers. The method relies on quantifying observations of transmission changes at visible wavelengths as an indicative measure of photodarkening at the signal wavelengths. Preliminary measurement results are presented supporting the utility of the technique for benchmarking the photodarkening behavior of different Yb-doped fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
    [CrossRef]
  2. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
    [CrossRef]
  3. D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
    [CrossRef]
  4. S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, Y. Jeong, "Latest development of high power fiber lasers in SPI," in Fiber Lasers: Technology, Systems, and Applications, L.N. Durvasula, ed., Proc. SPIE 5335, 229-237 (2004).
    [CrossRef]
  5. N.S. Platonov, D.V. Gapontsev, V.P. Gapontsev, V. Shumilin, "135W CW fiber laser with perfect single mode output," in Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2002), paper CPDC3.
  6. M. Broer, D. M. Krol, and D. J. DiGiovanni, "Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber," Opt. Lett. 18, 10, 799 (1993).
    [CrossRef]
  7. G. R. Atkins, A. L. G. Carter, "Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers," Opt. Lett. 19, 12, 874 (1994).
  8. M.M. Broer, R.L. Cone, J.R. Sompson, "Ultraviolet-induced distributed-feedback gratings in Ce3+-doped silica optical fibers," Opt. Lett. 16, 18, 1391 (1991).
    [CrossRef]
  9. E.G. Behrens, R.C. Powell, "Characteristics of laser-induced gratings in Pr3+- and Eu3+ -doped silicate glasses," J. Opt. Soc. Am. B 7, 8, 1437 (1990).
    [CrossRef]
  10. R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
    [CrossRef]
  11. L. B. Glebov, "Linear and Nonlinear Photoionization of Silicate Glasses," Glass Sci. Technol. 75, C2 (2002).
  12. H. Henschel, O. Köhn, U. Weinard, "Radiation Hardening of Pure Silica Optical Fibres by High Pressure Hydrogen Treatment," in Proceedings of IEEE 6th European Conference on Radiation and Its Effects on Components and Systems (IEEE, 2001), pp. 141-149.
  13. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, R. K. Byer, "Efficient yellow-light generation by frequency doubling a narrow linewidth 1150nm ytterbium fiber oscillator," Opt. Lett. 31, 3, 347 (2006).
    [CrossRef]
  14. P. Laperle and A. Chandonnet, "Photoinduced absorption in thulium-doped ZBLAN fibers," Opt. Lett. 20, 24, 2484 (1995).
    [CrossRef]

2006 (1)

2004 (1)

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

2002 (2)

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

L. B. Glebov, "Linear and Nonlinear Photoionization of Silicate Glasses," Glass Sci. Technol. 75, C2 (2002).

1997 (2)

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

1991 (1)

1990 (1)

Atkins, G. R.

Barber, P.R.

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Behrens, E.G.

Broer, M.

Broer, M.M.

Byer, R. K.

Caplen, J.E.

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Carter, A.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Carter, A. L. G.

Chandonnet, A.

Cone, R.L.

Di Teodoro, F.

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

DiGiovanni, D. J.

Digonnet, M. J. F.

Doerfel, F.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Ehlers, B.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Farroni, J.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Fejer, M. M.

Galvanauskas, A.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Glebov, L. B.

L. B. Glebov, "Linear and Nonlinear Photoionization of Silicate Glasses," Glass Sci. Technol. 75, C2 (2002).

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
[CrossRef]

Hanna, D.C.

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Heinemann, S.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Kliner, D.A.V.

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

Koplow, J.P.

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

Krol, D. M.

Langrock, C.

Laperle, P.

Liu, C.-H.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Moore, S.W.

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
[CrossRef]

Powell, R.C.

Sinha, S.

Smith, A.V.

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

Sompson, J.R.

Tankala, K.

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
[CrossRef]

Tropper, A.C.

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

Electron. Lett. (1)

C.-H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810W continuous-wave and single transverse-mode fibre laser using 20 µm core Yb-doped double-clad fibre," Electron. Lett. 40, 23 (2004).
[CrossRef]

Glass Sci. Technol. (1)

L. B. Glebov, "Linear and Nonlinear Photoionization of Silicate Glasses," Glass Sci. Technol. 75, C2 (2002).

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 7 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375 (1997).
[CrossRef]

D.A.V. Kliner, F. Di Teodoro, J.P. Koplow, S.W. Moore, and A.V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393 (2002).
[CrossRef]

Opt. Lett. (5)

Other (3)

H. Henschel, O. Köhn, U. Weinard, "Radiation Hardening of Pure Silica Optical Fibres by High Pressure Hydrogen Treatment," in Proceedings of IEEE 6th European Conference on Radiation and Its Effects on Components and Systems (IEEE, 2001), pp. 141-149.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, Y. Jeong, "Latest development of high power fiber lasers in SPI," in Fiber Lasers: Technology, Systems, and Applications, L.N. Durvasula, ed., Proc. SPIE 5335, 229-237 (2004).
[CrossRef]

N.S. Platonov, D.V. Gapontsev, V.P. Gapontsev, V. Shumilin, "135W CW fiber laser with perfect single mode output," in Conference of Lasers and Electro-Optics, CLEO Technical Digest (OSA, 2002), paper CPDC3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Measurement methods for characterization of photodarkening. The induced excess loss spectrum can be calculated from the measured white light source transmission spectra of the sample before and after photodarkening by core pumping of a fiber sample. For single mode fibers, end-pumping by a single mode laser diode (SM-LD) pump is sufficient. Optionally the temporal behavior of the induced excess loss could be measured using a probe laser during the photodarkening of the fiber.

Fig. 2.
Fig. 2.

Examples of measured spectral shape of the induced color center.

Fig. 3.
Fig. 3.

Correlation between the excess loss at 633nm and at signal wavelength 1040–1070nm.

Metrics