Abstract

We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate (7.1–27 kHz) with constant pulse duration (1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality (M2<1.2), and <1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 µm with Watt-level output powers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 5th ed., (Springer-Verlag, Berlin, Germany, 1999), Chaps. 7 and 8
  2. J. J. Zayhowski, C. DillIII, C. Cook and J. L. Daneu, "Mid- and high-power passively Q-switched microchip lasers," in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller eds., Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999), pp. 178-186.
  3. T. Taira, Y. Matsuoka, H. Sakai, A. Sone and H. Kan, "Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.
  4. J. J. Zayhowski and A. L. Wilson "Energy-scavenging amplifiers for miniature solid-state lasers," Opt. Lett. 29, 1218-20 (2004).
    [CrossRef] [PubMed]
  5. F. Di Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier," Opt. Lett. 27,518-520 (2002).
    [CrossRef]
  6. M. Y. Cheng, Y. Chang, A. Galvanauskas, P. Mamidipudi, R. Chankatoti, and P. Gatchell, "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30,358-360 (2005).
    [CrossRef] [PubMed]
  7. R. Farrow, D. Kliner, P. Schrader, A. Hoops, S. Moore, G. Hadley and R. Schmitt, "High-peak-power (>1.2MW) pulsed fiber amplifier," in Fiber Lasers III: Technology, Systems and Applications, A. Brown, J. Nilsson, D. Harter and A. Tünnermann, eds., Proc. SPIE 6102, 138-148 (2006).
  8. J. P. Fève, N. Landru, and O. Pacaud, "Triggering passively Q-switched microlasers," in Advanced Solid-State Photonics, C. Denman, ed., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 373-378.
  9. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  10. C. Brooks and F. Di Teodoro, "1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier," Opt. Exp. 13,8999-9002 (2005).
    [CrossRef]
  11. F. Di Teodoro and C. Brooks, "Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses," Opt. Lett. 30,3299-3301 (2005).
    [CrossRef]
  12. F. Imkenberg, J. Barenz, H. D. Tholl, A. Malinowski, K. Furusawa, and D. J. Richardson, "Microchip laser master-oscillator Er/Yb-doped fiber-power-amplifier emitting 158 µJ pulses with a duration of 4.5 ns," in Conference on Lasers and Electro-Optics/Europe, Technical Digest (Optical Society of America, 2003), p. 628.
  13. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, "Fiber-optic laser sensor for mine detection and verification," Appl. Opt. 45, 3817-3825 (2006).
    [CrossRef] [PubMed]
  14. L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard and W. Grossman, "Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width," in Solid Sate Lasers XV: Technology and Devices, H. J. Hoffman and R.K. Shori, eds., Proc. SPIE 6100, 349-358 (2006).
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 1995).
  16. D. A. V. Kliner, F. DiTeodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
    [CrossRef]
  17. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer and W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).
    [CrossRef] [PubMed]
  18. M. J. Missey, V. Dominic, P. E. Powers and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227-1229 (1999).
    [CrossRef]
  19. J. P. Fève, B. Boulanger, B. Ménaert and O. Pacaud, "Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal," Opt. Lett. 28, 1028-1030 (2003).
    [CrossRef] [PubMed]
  20. O. Pacaud, J. P. Fève and L. Lefort, "Mid-infrared laser source with high average power and high repetition rate," in Advanced Solid-State Photonics, C. Denman, ed., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 438-443.

2006

2005

2004

2003

2002

F. Di Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier," Opt. Lett. 27,518-520 (2002).
[CrossRef]

D. A. V. Kliner, F. DiTeodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

2000

1999

1996

Bohling, C.

Bosenberg, W. R.

Boulanger, B.

Brooks, C.

F. Di Teodoro and C. Brooks, "Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses," Opt. Lett. 30,3299-3301 (2005).
[CrossRef]

C. Brooks and F. Di Teodoro, "1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier," Opt. Exp. 13,8999-9002 (2005).
[CrossRef]

Byer, R. L.

Chang, Y.

Chankatoti, R.

Cheng, M. Y.

Di Teodoro, F.

DiTeodoro, F.

D. A. V. Kliner, F. DiTeodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Dominic, V.

Eckardt, R. C.

Fejer, M. M.

Fève, J. P.

Galvanauskas, A.

Gatchell, P.

Goldberg, L.

Hohmann, K.

Holl, G.

Kliner, D. A. V.

Koplow, J. P.

Mamidipudi, P.

Ménaert, B.

Missey, M. J.

Moore, S. W.

D. A. V. Kliner, F. DiTeodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

F. Di Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier," Opt. Lett. 27,518-520 (2002).
[CrossRef]

Myers, L. E.

Pacaud, O.

Powers, P. E.

Reuter, M.

Schade, W.

Scheel, D.

Schepler, K. L.

Smith, A. V.

D. A. V. Kliner, F. DiTeodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Wilson, A. L.

Zayhowski, J. J.

Appl. Opt.

Opt. Commun.

D. A. V. Kliner, F. DiTeodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, "Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier," Opt. Commun. 210, 393-398 (2002).
[CrossRef]

Opt. Exp.

C. Brooks and F. Di Teodoro, "1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier," Opt. Exp. 13,8999-9002 (2005).
[CrossRef]

Opt. Lett.

F. Di Teodoro and C. Brooks, "Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses," Opt. Lett. 30,3299-3301 (2005).
[CrossRef]

J. J. Zayhowski and A. L. Wilson "Energy-scavenging amplifiers for miniature solid-state lasers," Opt. Lett. 29, 1218-20 (2004).
[CrossRef] [PubMed]

F. Di Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier," Opt. Lett. 27,518-520 (2002).
[CrossRef]

M. Y. Cheng, Y. Chang, A. Galvanauskas, P. Mamidipudi, R. Chankatoti, and P. Gatchell, "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30,358-360 (2005).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer and W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).
[CrossRef] [PubMed]

M. J. Missey, V. Dominic, P. E. Powers and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227-1229 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, B. Ménaert and O. Pacaud, "Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal," Opt. Lett. 28, 1028-1030 (2003).
[CrossRef] [PubMed]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
[CrossRef]

Other

L. A. Eyres, J. J. Morehead, J. Gregg, D. J. Richard and W. Grossman, "Advances in high-power harmonic generation: Q-switched lasers with electronically adjustable pulse width," in Solid Sate Lasers XV: Technology and Devices, H. J. Hoffman and R.K. Shori, eds., Proc. SPIE 6100, 349-358 (2006).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 1995).

O. Pacaud, J. P. Fève and L. Lefort, "Mid-infrared laser source with high average power and high repetition rate," in Advanced Solid-State Photonics, C. Denman, ed., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 438-443.

R. Farrow, D. Kliner, P. Schrader, A. Hoops, S. Moore, G. Hadley and R. Schmitt, "High-peak-power (>1.2MW) pulsed fiber amplifier," in Fiber Lasers III: Technology, Systems and Applications, A. Brown, J. Nilsson, D. Harter and A. Tünnermann, eds., Proc. SPIE 6102, 138-148 (2006).

J. P. Fève, N. Landru, and O. Pacaud, "Triggering passively Q-switched microlasers," in Advanced Solid-State Photonics, C. Denman, ed., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2005), pp. 373-378.

F. Imkenberg, J. Barenz, H. D. Tholl, A. Malinowski, K. Furusawa, and D. J. Richardson, "Microchip laser master-oscillator Er/Yb-doped fiber-power-amplifier emitting 158 µJ pulses with a duration of 4.5 ns," in Conference on Lasers and Electro-Optics/Europe, Technical Digest (Optical Society of America, 2003), p. 628.

W. Koechner, Solid-State Laser Engineering, 5th ed., (Springer-Verlag, Berlin, Germany, 1999), Chaps. 7 and 8

J. J. Zayhowski, C. DillIII, C. Cook and J. L. Daneu, "Mid- and high-power passively Q-switched microchip lasers," in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller eds., Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999), pp. 178-186.

T. Taira, Y. Matsuoka, H. Sakai, A. Sone and H. Kan, "Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Pulse energy (upper panel) and average power (lower panel) vs. launched pump power into the amplifier at five repetition rates. Amplified spontaneous emission and the contribution of the secondary pulse have been subtracted from the measurements (see text).

Fig. 2.
Fig. 2.

Pulse duration vs. repetition rate at six pulse energies. The insets show representative temporal profiles of the optical pulses.

Fig. 3.
Fig. 3.

Polarization extinction ratio vs. repetition rate at six pulse energies.

Fig. 4.
Fig. 4.

(Left) Duration of the amplified pulses (main pulse) vs. pulse energy for two different microchip seed lasers. Red squares: 28.2 kHz, 1.7 µJ, 1.05 ns seed laser; blue circles: 33.7 kHz, 15.3 µJ, 0.68 ns seed laser. (Right) Example normalized temporal profiles of the amplified pulses at low output energy (top) and high output energy (bottom). Red: 1.05 ns seed laser; blue: 0.68 ns seed laser.

Fig. 5.
Fig. 5.

(Left) Spectral width of the amplified pulses (main pulse) vs. pulse energy for two different microchip seed lasers. Red circles: 28.2 kHz, 1.7 µJ, 1.05 ns seed laser; blue circles: 33.7 kHz, 15.3 µJ, 0.68 ns seed laser. The linewidth was defined from 1% to 81% of the total energy in order to account for the main mode only. (Right) Example normalized spectra of the amplified pulses low output energy (top) and high output energy (bottom). Red: 1.05 ns seed laser; blue: 0.68 ns seed laser.

Fig. 6.
Fig. 6.

Pulse energy and average power vs. diode pump power for the second, third, fourth, and fifth harmonics at 27 kHz repetition rate.

Fig. 7.
Fig. 7.

OPG signal and idler powers vs. wavelength at a 27 kHz repetition rate and 5 W pump power.

Fig. 8.
Fig. 8.

Left panel: measured (squares) and calculated signal bandwidth (curve) vs. signal wavelength. Right panel: measured (circles) and calculated (curve) idler to signal power ratio vs. signal wavelength. All data were recorded at a 27 kHz repetition rate and pump intensity of 565 MW/cm2.

Tables (1)

Tables Icon

Table 1. Characteristics of the crystals used for the different interactions of harmonic generation. θ and ϕ are the angles between the propagation direction and the crystallographic c and b axes, respectively. Maximum output power and the corresponding conversion efficiency are shown in the last columns.

Metrics