Abstract

Comprehensive experimental measurement data are presented comparing the performance of an optical receiver with MLSE-EDC technology against a standard receiver for signals with uncompensated chromatic dispersion. Signals with the NRZ and duobinary modulation formats are investigated. We find that the MLSE-EDC technology provides greater uncompensated reach advantage for both formats as the allowable measured BER is increased, demonstrating the EDC technology has greatest effect and application in conjunction with strong forward error correction. We also measure signal quality vs. dispersion with constant OSNR and draw similar conclusions along with further insights into the application space of the EDC technology for both modulation formats.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Kanter, A. K. Samal, and A. Gandhi, "Electronic dispersion compensation for extended reach," Optical Fiber Communication Conference (OFC 2004) (Optical Society of America, Washington, D.C., 2004), paper TuG1.
  2. T. Nielsen and S. Chandrasekhar, "OFC 2004 Workshop on Optical and Electronic Mitigation of Impairments," J. Lightwave Technol. 23, 131-142 (2005).
    [CrossRef]
  3. H. Griesser, J.-P. Elbers, C. Fuerst, H. Wernz, and C. Glingener, "Increasing the dispersion tolerance of 10 Gb/s Duobinary Modulation by Electrical Distortion Equalisation," European Conference on Optical Communications (ECOC 2004), Stockholm, Sweden, paper We4.P.106, (2004).
  4. M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
    [CrossRef]
  5. A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s Receiver with digital equaliser using maximum likelihood sequence estimation," European Conference on Optical Communications (ECOC 2004), Stockholm, Sweden, paper Th4.1.5, (2004).
  6. H. Haunstein, and R. Urbansky, "Application of Electronic Equalization and Error Correction in Lightwave Systems," European Conference on Optical Communications (ECOC 2004), Stockholm, Sweden, paper Th.1.5.1, (2004).
  7. J.-P. Elbers, H. Wernz, H. Griesser, C. Glingener, A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, and C. Schulien, "Measurement of the dispersion tolerance of Optical Duobinary with an MLSE-Receiver at 10.7 Gb/s," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2005), paper OThJ4.
    [PubMed]
  8. C. Xia, and W. Rosenkranz, "Performance enhancement for Duobinary Modulation through Nonlinear Electrical Equalization," European Conference on Optical Communications (ECOC 2005), Glasgow, Scotland, paper Tu4.2.31, (2005).
  9. A. Faerbert, "Application of Digital Equalization in Optical Transmission Systems," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2006), paper OTuE5.
    [CrossRef]
  10. V. Curri, R. Gaudino, A. Napoli, and A. Nespola, "Advantages of using the Electronic Equalization together with innovative modulation formats in dispersion-limited systems," 2004 IEEE LEOS Annual Meeting Conference Proceedings, paper ThB1, (2004).
  11. A. Price and N. Le Mercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett. 31, 58-59 (1995).
    [CrossRef]
  12. S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of Optical Duobinary Modulated Signal," Electron. Lett. 31, 1359-1361 (1995).
    [CrossRef]
  13. D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
    [CrossRef]

2003 (1)

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

1997 (1)

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
[CrossRef]

1995 (2)

A. Price and N. Le Mercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett. 31, 58-59 (1995).
[CrossRef]

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of Optical Duobinary Modulated Signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Boroditsky, M.

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

Chbat, M.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
[CrossRef]

Coskun, O.

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

Feuer, M. D.

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

Huang, S,-Y.

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

Iwashita, K.

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of Optical Duobinary Modulated Signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Kuwano, S.

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of Optical Duobinary Modulated Signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Le Mercier, N.

A. Price and N. Le Mercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett. 31, 58-59 (1995).
[CrossRef]

Penninckx, D.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
[CrossRef]

Pierre, L.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
[CrossRef]

Price, A.

A. Price and N. Le Mercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett. 31, 58-59 (1995).
[CrossRef]

Thiery, J.-P.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
[CrossRef]

Woodward, S. L.

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

Yonenaga, K.

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of Optical Duobinary Modulated Signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

Electron. Lett. (2)

A. Price and N. Le Mercier, "Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance," Electron. Lett. 31, 58-59 (1995).
[CrossRef]

S. Kuwano, K. Yonenaga, and K. Iwashita, "10 Gbit/s repeaterless transmission experiment of Optical Duobinary Modulated Signal," Electron. Lett. 31, 1359-1361 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The Phase-Shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett. 9, 259-261 (1997).
[CrossRef]

M. D. Feuer, S,-Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

Other (9)

A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s Receiver with digital equaliser using maximum likelihood sequence estimation," European Conference on Optical Communications (ECOC 2004), Stockholm, Sweden, paper Th4.1.5, (2004).

H. Haunstein, and R. Urbansky, "Application of Electronic Equalization and Error Correction in Lightwave Systems," European Conference on Optical Communications (ECOC 2004), Stockholm, Sweden, paper Th.1.5.1, (2004).

J.-P. Elbers, H. Wernz, H. Griesser, C. Glingener, A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, and C. Schulien, "Measurement of the dispersion tolerance of Optical Duobinary with an MLSE-Receiver at 10.7 Gb/s," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2005), paper OThJ4.
[PubMed]

C. Xia, and W. Rosenkranz, "Performance enhancement for Duobinary Modulation through Nonlinear Electrical Equalization," European Conference on Optical Communications (ECOC 2005), Glasgow, Scotland, paper Tu4.2.31, (2005).

A. Faerbert, "Application of Digital Equalization in Optical Transmission Systems," Optical Fiber Communication Conference and Exhibition and The National Fiber Optic Engineers Conference on CD-ROM) (Optical Society of America, Washington, D.C., 2006), paper OTuE5.
[CrossRef]

V. Curri, R. Gaudino, A. Napoli, and A. Nespola, "Advantages of using the Electronic Equalization together with innovative modulation formats in dispersion-limited systems," 2004 IEEE LEOS Annual Meeting Conference Proceedings, paper ThB1, (2004).

G. S. Kanter, A. K. Samal, and A. Gandhi, "Electronic dispersion compensation for extended reach," Optical Fiber Communication Conference (OFC 2004) (Optical Society of America, Washington, D.C., 2004), paper TuG1.

T. Nielsen and S. Chandrasekhar, "OFC 2004 Workshop on Optical and Electronic Mitigation of Impairments," J. Lightwave Technol. 23, 131-142 (2005).
[CrossRef]

H. Griesser, J.-P. Elbers, C. Fuerst, H. Wernz, and C. Glingener, "Increasing the dispersion tolerance of 10 Gb/s Duobinary Modulation by Electrical Distortion Equalisation," European Conference on Optical Communications (ECOC 2004), Stockholm, Sweden, paper We4.P.106, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up for measurement of MLSE-EDC effectiveness against signal distortion caused by chromatic dispersion.

Fig. 2.
Fig. 2.

Experimental data for NRZ modulation format signals and required OSNR to achieve BER values of a) 10-9, b) 10-6, c) 10-4, and d) 10-3 as a function of uncompensated transmission distance over standard single-mode fiber.

Fig. 3.
Fig. 3.

Experimental data for duobinary modulation format signals and required OSNR to achieve BER values of a) 10-9, b) 10-6, c) 10-4, and d) 10-3 as a function of uncompensated transmission distance over standard single-mode fiber.

Fig. 4.
Fig. 4.

Summary of MLSE-EDC receiver reach advantage data as a function of measurement BER expressed in terms of a) percentage, and b) absolute distance.

Fig. 5.
Fig. 5.

Comparison of NRZ and duobinary performance in terms of required OSNR for a BER value of 10-3 for a) the standard receiver, and b) the MLSE-EDC receiver.

Fig. 6.
Fig. 6.

Comparison of standard and MLSE-EDC receivers for an NRZ signal as a function of transmission distance with constant OSNR.

Fig. 7.
Fig. 7.

Comparison of standard and MLSE-EDC receivers for a duobinary signal as a function of transmission distance with constant OSNR.

Fig. 8.
Fig. 8.

Comparison of duobinary format with standard receiver against NRZ format with MLSE-EDC receiver as a function of transmission distance with constant OSNR.

Metrics