Abstract

We analyze transmission of a normally incident plane wave through a 100nm diameter hole in a silver film that is filled with a high index dielectric and is surrounded by 300nm wide surface grooves. Specifically, we study the dependency of the transmission efficiency on the number of grooves, groove depth, and the horizontal distance between the groove and the central hole. We observe that the investigated structure exhibits over five orders of magnitude larger transmission efficiency versus a single hole without the dielectric filling.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
    [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-4 (2001).
    [CrossRef]
  3. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
    [CrossRef]
  4. A. Degiron A and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
    [CrossRef] [PubMed]
  5. H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
    [CrossRef]
  7. A. R. Zakharian, M. Mansuripur, J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004).
    [CrossRef] [PubMed]
  8. J. Olkkonen, K. Kataja, and D. Howe, "Light transmission through a high index dielectric-filled sub-wavelength hole in a metal film," Opt. Express 13, 6980-6989 (2005).
    [CrossRef] [PubMed]
  9. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  10. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).
  11. J. Takahara, and T. Kobayashi, "Nano-optical waveguides breaking through diffraction limit of light," in Optomechatronic Micro/Nano Components, Devices, and Systems, Y. Katagiri, eds., Proc. SPIE 5604, 158-172 (2004).
    [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Second Edition, Artech House, Boston, 2000).
  13. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
    [CrossRef] [PubMed]
  14. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12, 6106-6121 (2004).
    [CrossRef] [PubMed]

2005 (1)

2004 (4)

2002 (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

2001 (2)

1999 (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
[CrossRef]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Ebbesen, T. W.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-4 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

Howe, D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kataja, K.

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Lezec, H. J.

H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-4 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

Linke, R. A.

Mansuripur, M.

Moloney, J.

Moloney, J. V.

Olkkonen, J.

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-4 (2001).
[CrossRef]

Takakura, Y.

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

Thio, T.

H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-4 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

Xie, Y.

Zakharian, A.

Zakharian, A. R.

Adv. Mater. (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, "Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture," Adv. Mater. 11, 860-862 (1999).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata A, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: Physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-82 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

Other (3)

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000).

J. Takahara, and T. Kobayashi, "Nano-optical waveguides breaking through diffraction limit of light," in Optomechatronic Micro/Nano Components, Devices, and Systems, Y. Katagiri, eds., Proc. SPIE 5604, 158-172 (2004).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Second Edition, Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Complex propagation constant (β=β re+β im i) of the HE11 mode as a function of the refractive index of the waveguide core (nc) for an infinitely long cylindrical waveguide having a silver cladding and a core radius of 50nm. k 0=2π/λ 0, λ 0=650nm, and nAg=0.055+4.44i.

Fig. 2.
Fig. 2.

Transmission efficiency (η) of a normally incident linearly polarized plane wave through a sub-wavelength (r=50nm), cylindrical dielectric hole in a silver film as a function of the film thickness (t) for different refractive indexes of the hole: nc=1.0 (red line), nc=2.4 (blue), nc=2.8 (green). The refractive indexes of the incident and the exit medium are denoted by n0 and n1, respectively. n0=n1=1.0, nAg=0.055+4.44i, λ 0=650nm. The solid line is magnified by a factor of 500.

Fig. 3.
Fig. 3.

(a) Cross-section of the modeled structure: A sub-wavelength hole (r=50nm) in a silver film (t=515nm) that is filled by a high index dielectric medium (nc=2.8) is surrounded by a single groove having depth h and width w. (b) Transmission efficiency (η) of a normally incident, linearly polarized plane wave through the sub-wavelength hole shown in (a) as a function of the groove depth (h) and the distance (s 1) between the central hole and the groove. In all cases, w=300nm, λ 0=650nm, and nAg=0.055+4.44i.

Fig. 4.
Fig. 4.

Transmission efficiency (η) of a normally incident, linearly polarized plane wave through a sub-wavelength hole (r=50nm, nc=2.8) in a free standing silver film (t=180nm) when the central hole is surrounded by (a) a single groove, (b) two grooves (s 1=300nm), and (c) three grooves (s 1=s 2=300nm). (d) Transmission efficiency as a function of the number of grooves when the radial distance (sn ) between the adjacent grooves is 300nm. In all cases, w=300nm, h=120nm, λ 0=650nm, and nAg=0.055+4.44i.

Metrics