Abstract

We report on the first application of extended–wavelength DFB diode lasers to Cavity–Enhanced Absorption Spectroscopy in-situ trace measurements on geothermal gases. The emission from the most active fumarole at the Solfatara volcano near Naples (Italy) was probed for the presence of CO and CH4. After passing through a gas dryer and cooler, the volcanic gas flow (98% CO2) was analysed in real time for the concentration of these species, whose relatively strong absorption lines could be monitored simultaneously by a single Distributed Feed–Back (DFB) GaSb-based diode laser emitting around 2.33µm (4300 cm-1) at room temperature. The concentrations were found to be about 3 ppm and 75 ppm, respectively, while actual detection limits for these molecules are around 1 ppb. We discuss the possibility of detecting other species of interest for volcanic emission monitoring.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
    [CrossRef]
  2. P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
    [CrossRef]
  3. J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
    [CrossRef]
  4. D. Tedesco and J. C. Sabroux, "The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy," Bull. Volcanol. 49, 381 (1987).
    [CrossRef]
  5. G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
    [CrossRef]
  6. T. Mori and K. Notsu, "Remote CO, COS, CO2, SO2, and HCl detection and temperature estimation of volcanic gas," Geophys. Res. Lett. 24, 2047 (1997).
    [CrossRef]
  7. P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998).
    [CrossRef]
  8. A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
    [CrossRef]
  9. A. Castrillo, G. Casa, M. V. Burgel, D. Tedesco, and L. Gianfrani, "First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry," Opt. Express 12, 6515 (2004).
    [CrossRef] [PubMed]
  10. B. Dahmani, L. Hollberg, and R. Drullinger, "Frequency stabilization of semiconductor lasers by resonant optical feedback," Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  11. PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989).
    [CrossRef]
  12. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
    [CrossRef]
  13. D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
    [CrossRef]
  14. A. Salhi, A. Vicet, Y. Rouillard, A. Garnache, D. Barat, R. Werner, and J. Koeth, "Type I quantum well Sb-based Distributed Feedback laser diodes emitting near 2.4μm," in Sixth International Conference on Mid-Infrared Optoelectronics Materials and Devices (MIOMD VI) (June 28-July 1 2004, St Petersburg, Russia, 2004).
  15. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, "Single-frequency Sb-based distributed-feedback lasers emitting at 2.3μm above room temperature for application in tunable diode laser absorption spectroscopy," Appl. Opt. 45, 4957-4965 (2006).
    [CrossRef] [PubMed]
  16. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).
  17. I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

2006

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, "Single-frequency Sb-based distributed-feedback lasers emitting at 2.3μm above room temperature for application in tunable diode laser absorption spectroscopy," Appl. Opt. 45, 4957-4965 (2006).
[CrossRef] [PubMed]

2005

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
[CrossRef]

2004

A. Castrillo, G. Casa, M. V. Burgel, D. Tedesco, and L. Gianfrani, "First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry," Opt. Express 12, 6515 (2004).
[CrossRef] [PubMed]

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

2002

G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
[CrossRef]

1998

P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998).
[CrossRef]

1997

T. Mori and K. Notsu, "Remote CO, COS, CO2, SO2, and HCl detection and temperature estimation of volcanic gas," Geophys. Res. Lett. 24, 2047 (1997).
[CrossRef]

1993

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

1991

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

1989

PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

1987

D. Tedesco and J. C. Sabroux, "The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy," Bull. Volcanol. 49, 381 (1987).
[CrossRef]

B. Dahmani, L. Hollberg, and R. Drullinger, "Frequency stabilization of semiconductor lasers by resonant optical feedback," Opt. Lett. 12, 876 (1987).
[CrossRef] [PubMed]

Allard, P.

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

Barat, D.

Bréant, CH.

PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Burgel, M. V.

Burton, M. R.

P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998).
[CrossRef]

Caliro, S.

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Casa, G.

Castrillo, A.

Chenevier, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
[CrossRef]

Chiodini, G.

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Clairon, A.

PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Cortecci, G.

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

Courtillot, I.

I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

Dahmani, B.

De Natale, G.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
[CrossRef]

De Natale, P.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
[CrossRef]

Drullinger, R.

Ferraro, P.

G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
[CrossRef]

Fiebig, J.

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Francis, P.

P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998).
[CrossRef]

Gagliardi, G.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

Garnache, A.

Gianfrani, L.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

A. Castrillo, G. Casa, M. V. Burgel, D. Tedesco, and L. Gianfrani, "First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry," Opt. Express 12, 6515 (2004).
[CrossRef] [PubMed]

G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
[CrossRef]

Hollberg, L.

Hunziker, J.

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Iannone, R. Q.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

Igarashi, G.

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

Jost, H.-J.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

Kassi, S.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
[CrossRef]

Kerstel, E. R. T.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

Koeth, J.

Laurent, PH.

PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Lopez, J.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

Maiorani, A.

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

Mori, T.

T. Mori and K. Notsu, "Remote CO, COS, CO2, SO2, and HCl detection and temperature estimation of volcanic gas," Geophys. Res. Lett. 24, 2047 (1997).
[CrossRef]

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

Morville, J.

I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
[CrossRef]

Motto-Ros, V.

I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

Notsu, K.

T. Mori and K. Notsu, "Remote CO, COS, CO2, SO2, and HCl detection and temperature estimation of volcanic gas," Geophys. Res. Lett. 24, 2047 (1997).
[CrossRef]

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

Oppenheimer, C.

P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998).
[CrossRef]

Ouvrard, A.

Ramonet, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

Rizzo, A.

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Rocco, A.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

Romanini, D.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, "Single-frequency Sb-based distributed-feedback lasers emitting at 2.3μm above room temperature for application in tunable diode laser absorption spectroscopy," Appl. Opt. 45, 4957-4965 (2006).
[CrossRef] [PubMed]

I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
[CrossRef]

Rouillard, Y.

Sabroux, J. C.

D. Tedesco and J. C. Sabroux, "The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy," Bull. Volcanol. 49, 381 (1987).
[CrossRef]

Salhi, A.

Schmidt, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

Seufert, J.

Spangenberg, J.

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Tedesco, D.

A. Castrillo, G. Casa, M. V. Burgel, D. Tedesco, and L. Gianfrani, "First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry," Opt. Express 12, 6515 (2004).
[CrossRef] [PubMed]

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

D. Tedesco and J. C. Sabroux, "The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy," Bull. Volcanol. 49, 381 (1987).
[CrossRef]

Tohjima, Y.

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

Turi, B.

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

Valant, C.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

Vicet, A.

Wakita, H.

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

Werner, R.

Appl. Opt.

Appl. Phys. B

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005).
[CrossRef]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).

I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004).
[CrossRef]

Bull. Volcanol.

D. Tedesco and J. C. Sabroux, "The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy," Bull. Volcanol. 49, 381 (1987).
[CrossRef]

Geochem. J.

K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
[CrossRef]

Geochimica et Cosmochimica Acta

J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004).
[CrossRef]

Geophys. Res. Lett.

T. Mori and K. Notsu, "Remote CO, COS, CO2, SO2, and HCl detection and temperature estimation of volcanic gas," Geophys. Res. Lett. 24, 2047 (1997).
[CrossRef]

IEEE J. Quantum Electron.

PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

J. Volcanol. Geotherm. Res.

P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991).
[CrossRef]

Nature

P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002).
[CrossRef]

Opt. Lett.

Other

A. Salhi, A. Vicet, Y. Rouillard, A. Garnache, D. Barat, R. Werner, and J. Koeth, "Type I quantum well Sb-based Distributed Feedback laser diodes emitting near 2.4μm," in Sixth International Conference on Mid-Infrared Optoelectronics Materials and Devices (MIOMD VI) (June 28-July 1 2004, St Petersburg, Russia, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

OFCEAS setup inside its 19” rack chassis. Gas inlets and outlets to the V–shaped high–finesse cavity are next to the high reflectivity mirrors (M1,M2,M3). Photodiodes PD1 and PD2 collect signals for cavity input (given by beamsplitter BS) and output, respectively. A polarizer (P) is used to attenuate the laser light to set an appropriate optical feedback level. One of the steering mirrors is mounted on a PZT disk to allow fine control of the feedback phase. The 2.33µm DFB laser is installed on a dove–tail translation stage.

Fig. 2.
Fig. 2.

Typical single-scan OF-CEAS spectrum (thick black line) of fumarole dried gas, taken for a sample pressure of 80mbar. In order to extract concentrations, a section of the spectrum around the CO line was fit using 10 Voigt profiles (more details in the text). In colour are HITRAN simulations for the 3 contributing species for the same pressure and concentrations values as obtained from the fit. Their sum is plot as a dotted black line and is subtracted from the experimental data to give a residual sinusoidal baseline (short-dash black line).

Fig. 3.
Fig. 3.

Concentrations of CO, CH4 and NH3 during a 1 hour period of continuous monitoring of the fumarole gas. These are obtained from multiline fits of spectra as the one shown in the previous figure. The flow conditions were slightly perturbed by the need to clean up excess water and ice clogs accumulating inside the cold trap, which might account for the fluctuating NH3 value. Indeed, for this very polar species we cannot be conclusive about its concentration due to the sampling scheme. 2 superposed traces are given for CH4 which are obtained by fitting different sets of lines in the spectrum.

Fig. 4.
Fig. 4.

Concentrations of CO and CH4 as a function of time while sampling ambient air at Solfatara volcano. The methane concentration appears anomalously large probably as a result of the methane emission from the fumaroles, while the CO concentration of about 200 ppb appears close to the normal ambient level. Both methane and CO are perturbed by sudden spikes which sometimes are perfectly correlated. This indicates the presence of independent sources (see text). The response time of the device obtained by taking the rise and fall time of the narrowest features is about 0.6s.

Metrics