V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 1–4 (2005).

[CrossRef]

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in light transmission through a near-field probe,” J. Opt. A: Pure Appl. Opt. 6, S59–S63 (2004).

[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A: Pure Appl. Opt. 5, 153–158 (2003).

[CrossRef]

T. Habashy, A. T. Friberg, and E. Wolf, “Application of the coherent-mode representation to a class of inverse source problems,” Inverse Probl. 13, 47–61 (1997).

[CrossRef]

D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference timedomain calculations,” Ultramicroscopy 57, 189–195 (1995).

[CrossRef]

M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Optica Acta 30, 1051–1065 (1983).

[CrossRef]

M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Optica Acta 30, 1051–1065 (1983).

[CrossRef]

D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference timedomain calculations,” Ultramicroscopy 57, 189–195 (1995).

[CrossRef]

D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, London, UK, 2003).

M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Optica Acta 30, 1051–1065 (1983).

[CrossRef]

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in light transmission through a near-field probe,” J. Opt. A: Pure Appl. Opt. 6, S59–S63 (2004).

[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A: Pure Appl. Opt. 5, 153–158 (2003).

[CrossRef]

T. Habashy, A. T. Friberg, and E. Wolf, “Application of the coherent-mode representation to a class of inverse source problems,” Inverse Probl. 13, 47–61 (1997).

[CrossRef]

B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions,” in Progress in Optics, Vol. VIII, ed. E. Wolf (North-Holland, Amsterdam, 1971), pp. 311–407.

M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Optica Acta 30, 1051–1065 (1983).

[CrossRef]

T. Habashy, A. T. Friberg, and E. Wolf, “Application of the coherent-mode representation to a class of inverse source problems,” Inverse Probl. 13, 47–61 (1997).

[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 1–4 (2005).

[CrossRef]

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in light transmission through a near-field probe,” J. Opt. A: Pure Appl. Opt. 6, S59–S63 (2004).

[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A: Pure Appl. Opt. 5, 153–158 (2003).

[CrossRef]

J. A. Veerman, A.M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett.72, 3115–3117 (1998).

[CrossRef]

C. Lanczos, Linear Differential Operators (Van Nostrand, London, 1961).

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in light transmission through a near-field probe,” J. Opt. A: Pure Appl. Opt. 6, S59–S63 (2004).

[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A: Pure Appl. Opt. 5, 153–158 (2003).

[CrossRef]

J. A. Veerman, A.M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett.72, 3115–3117 (1998).

[CrossRef]

D. Porter and D. S. G. Stirling, Integral Equations—A Practical Treatment from Spectral Theory to Applications (Cmabridge University Press, Cambridge, UK, 1990).

M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Optica Acta 30, 1051–1065 (1983).

[CrossRef]

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in light transmission through a near-field probe,” J. Opt. A: Pure Appl. Opt. 6, S59–S63 (2004).

[CrossRef]

D. Porter and D. S. G. Stirling, Integral Equations—A Practical Treatment from Spectral Theory to Applications (Cmabridge University Press, Cambridge, UK, 1990).

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A: Pure Appl. Opt. 5, 153–158 (2003).

[CrossRef]

J. A. Veerman, A.M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett.72, 3115–3117 (1998).

[CrossRef]

J. A. Veerman, A.M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett.72, 3115–3117 (1998).

[CrossRef]

A. Walther, The Ray and Wave Theory of Lenses (Cambridge University Press, Cambridge, UK, 1997).

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 1–4 (2005).

[CrossRef]

T. Habashy, A. T. Friberg, and E. Wolf, “Application of the coherent-mode representation to a class of inverse source problems,” Inverse Probl. 13, 47–61 (1997).

[CrossRef]

T. Habashy, A. T. Friberg, and E. Wolf, “Application of the coherent-mode representation to a class of inverse source problems,” Inverse Probl. 13, 47–61 (1997).

[CrossRef]

J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in light transmission through a near-field probe,” J. Opt. A: Pure Appl. Opt. 6, S59–S63 (2004).

[CrossRef]

A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A: Pure Appl. Opt. 5, 153–158 (2003).

[CrossRef]

M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Optica Acta 30, 1051–1065 (1983).

[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 1–4 (2005).

[CrossRef]

D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference timedomain calculations,” Ultramicroscopy 57, 189–195 (1995).

[CrossRef]

D. Porter and D. S. G. Stirling, Integral Equations—A Practical Treatment from Spectral Theory to Applications (Cmabridge University Press, Cambridge, UK, 1990).

D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, London, UK, 2003).

J. A. Veerman, A.M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett.72, 3115–3117 (1998).

[CrossRef]

A. Walther, The Ray and Wave Theory of Lenses (Cambridge University Press, Cambridge, UK, 1997).

C. Lanczos, Linear Differential Operators (Van Nostrand, London, 1961).

B. R. Frieden, “Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions,” in Progress in Optics, Vol. VIII, ed. E. Wolf (North-Holland, Amsterdam, 1971), pp. 311–407.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, eds., Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, UK, 1992).