Abstract

A strategy for suppressing higher-order modes in aircore bandgap fibers is proposed. Simulations confirm that significant suppression of unwanted modes is achieved by including index-matched air-guiding structures in the cladding. Suppressing higher-order modes offers to improve the fundamental loss limit in aircore fibers, addressing a key obstacle to the development of this technology.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748 (2001).
    [CrossRef] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236 (2005).
    [CrossRef] [PubMed]
  3. J. M. Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477 (2005).
    [CrossRef] [PubMed]
  4. J. M. Fini, "Suppression of Higher-Order Modes in Aircore Microstructure Fiber Designs," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMM4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMM4
  5. L. Dong, G. E. Berkey, P. Chen, and D. L. Weidman, "Resonant ring fiber filters," J. Lightwave Technol. 18, 1018-1023 (2000).
    [CrossRef]
  6. J. M. Fini, R. T. Bise, M. F. Yan, A. D. Yablon, and P. W. Wisk, "Distributed fiber filter based on index-matched coupling between core and cladding," Opt. Express 13, 10022-33 (2005).
    [CrossRef] [PubMed]
  7. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006).
    [CrossRef] [PubMed]
  8. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341 (2004).
    [CrossRef] [PubMed]
  9. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
    [CrossRef] [PubMed]
  10. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
    [CrossRef]
  11. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485 (2004).
    [CrossRef] [PubMed]
  12. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, V. Finazzi, and T. M. Monro, "Realistic designs of silica hollow-core photonic bandgap fibers free of surface modes," in Optical Fiber Communication, Technical Digest (Optical Society of America, 2006) paper OFC1

2006 (1)

2005 (3)

2004 (3)

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

Albin, S.

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Berkey, G. E.

Birks, T.

Bise, R. T.

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Chen, P.

Couny, F.

Desfarges-Berthelemot, A.

Digonnet, M. J. F.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Dong, L.

Engeness, T. D.

Fan, S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Farr, L.

Février, S.

Fini, J. M.

Fink, Y.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Guo, S.

Ibanescu, M.

Jacobs, S. A.

Joannopoulos, J. D.

Johnson, S. G.

Kermène, V.

Kim, H. K.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Kino, G. S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Knight, J.

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Lavoute, L.

Mangan, B.

Mason, M.

Muller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Roberts, P. J.

Rogowski, R.

Roy, P.

Russell, P. St. J.

Sabert, H.

Shin, J.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Skorobogatiy, M.

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Soljacic, M.

Tai, H.

Tomlinson, A.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Weidman, D. L.

West, J. A.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485 (2004).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Williams, D.

Wisk, P. W.

Wu, F.

Yablon, A. D.

Yan, M. F.

J. Lightwave Technol. (1)

J. Quantum Electron. (1)

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Other (2)

J. M. Fini, "Suppression of Higher-Order Modes in Aircore Microstructure Fiber Designs," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMM4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMM4

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, V. Finazzi, and T. M. Monro, "Realistic designs of silica hollow-core photonic bandgap fibers free of surface modes," in Optical Fiber Communication, Technical Digest (Optical Society of America, 2006) paper OFC1

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Selective mode suppression can be accomplished with a resonant-cladding structure. Desirable modes are off-resonance and well-confined (left), while resonant unwanted modes have enhanced leakage.

Fig. 2.
Fig. 2.

Resonant suppression of higher-order core modes is accomplished by introducing indexmatched cladding defect waveguides. Defect modes are index-matched with HOMs but not the fundamental core mode.

Fig. 3.
Fig. 3.

Calculated modes of two aircore fibers with standard cladding design. Effective index is plotted versus wavelength for small (a) and large (b) core fibers (with fundamental modes in blue and HOMs in red). Losses (c) show that, as the core increases from small (dashed) to large (solid), HOMs become much more well-guided with respect to the fundamental.

Fig. 4.
Fig. 4.

An air-guiding cladding waveguide region can be designed to achieve broadband indexmatching with unwanted core modes by tuning the waveguide size. Mode solutions (left) are repeated from Fig. 3(b) in black, and a defect-guided mode is superimposed schematically in red, targeting the first HOM group. Deect geometry is depicted schematically (right)

Fig. 5.
Fig. 5.

A fiber design (left) with two air-guiding cladding defects and Rcore=4.59µm selectively suppresses the dominant HOMs. Calculated losses (right) show that HOM losses (solid red) are higher than the comparable standard fiber (dashed red, assuming no cladding defects). The fundamental instead shows reduced loss (solid blue) relative to the standard fiber (dashed blue).

Fig. 6.
Fig. 6.

A second design (left) has cladding defects re-designed to index-match a different core radius, Rcore=5.26µm. Calculated losses (right) for this structure show almost identical fundamental confinement (solid and dashed blue) for the fibers with and without cladding defects, but substantial suppression of the HOMs by the defects (solid red) compared to the structure without defects (dashed red). Rectangular regions illustrate how HOM suppression can increase usable bandwidth.

Fig. 7.
Fig. 7.

Problematic surface modes can be avoided if the core and cladding defects have appropriate shapes. Generalizing the design rules of [10], we form defects by removing thick glass vertices, not cutting through them.

Fig. 8.
Fig. 8.

Fundamental-mode intensity profiles of the standard (left) and HOM-suppressed (right) designs show very circular and nearly identical modes. The dashed line indicated the core radius, Rcore=4.59.

Fig. 9.
Fig. 9.

Intensity profiles of the standard (left) and HOM-suppressed (center) designs highlight the coupling to a defect-guided mode. Intensity plotted vs. radius (right) shows corresponding enhanced penetration through the cladding, leading to increased tunneling losses.

Metrics