Abstract

Detailed wavelength conversion, extinction ratio regeneration, and signal re-amplification experiments are performed using a monolithically integrated, widely tunable photocurrent driven wavelength converter. A -3.5 dB power penalty is observed in bit error rate measurements at 2.5 Gb/s when the extinction ratio of an incoming signal is regenerated from 4 dB to 11 dB, and the input signal wavelength is switched from 1548 nm to an output wavelength range between 1533 nm and 1553 nm. When the input signal extinction ratio is regenerated from 4 to 11 dB, the wavelength converter provides facet to facet conversion gain of 5 dB, 7.7 dB, and 7.6 dB for conversion from 1548 nm to output wavelengths of 1533, 1545 nm, and 1553 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).
  2. D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).
  3. P. S. Cho, D. Mahgerefteh, and J. Coldhar, "All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 1662-1664 (1999).
    [CrossRef]
  4. S. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
    [CrossRef]
  5. M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
    [CrossRef]
  6. M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
    [CrossRef]
  7. A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
    [CrossRef]

2006

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

2005

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

2001

M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).

1999

P. S. Cho, D. Mahgerefteh, and J. Coldhar, "All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 1662-1664 (1999).
[CrossRef]

1996

S. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Barton, J.

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

Barton, J. S.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

Blumenthal, D. J.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

Cho, P. S.

P. S. Cho, D. Mahgerefteh, and J. Coldhar, "All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 1662-1664 (1999).
[CrossRef]

Coldhar, J.

P. S. Cho, D. Mahgerefteh, and J. Coldhar, "All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 1662-1664 (1999).
[CrossRef]

Coldren, L. A.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

Dummer, M.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

Jeon, M. Y.

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Kim, D. C.

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Leem, Y. A.

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Mahgerefteh, D.

P. S. Cho, D. Mahgerefteh, and J. Coldhar, "All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 1662-1664 (1999).
[CrossRef]

Park, K. H.

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Penty, R. V.

M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).

Poulsen, H. N.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

Raring, J.

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

Raring, J. W.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

Shim, E. D.

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Sysak, M.

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

Sysak, M. N.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

Tauke-Pederetti, A.

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

Tauke-Pedretti, A.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

Webster, M.

M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).

White, I. H.

M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).

Wonfor, A.

M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).

Yee, D. S.

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Yoo, S. B.

S. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Comm.

M. Webster, A. Wonfor, R. V. Penty, and I. H. White, "All-optical 2R regeneration and wavelength conversion at 10 Gb/s in an integrated semiconductor optical amplifier/distributed feedback laser," Proc. European Conf. on Opt.Comm.(ECOC) 4, 578-579 (2001).

D. C. Kim, M. Y. Jeon, Y. A. Leem, E. D. Shim, D. S. Yee, and K. H. Park, "Extinction ratio improvement and negative BER penalty for 2R regeneration in Mach-Zehnder wavelength converter," Proc. European Conf. on Opt.Comm.(ECOC) 3, 749-750 (2005).

Electron. Lett.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, "Single-chip, widely-tunable 10 Gbps photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver," Electron. Lett. 42, 657-658 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Tauke-Pederetti, M. Dummer, J. Barton, M. Sysak, J. Raring, and L. A. Coldren, "High saturation power and high gain integrated receivers," IEEE Photon. Technol. Lett. 17, 2167-2169 (2005).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, D. J. Blumenthal, and L. A. Coldren, "A single regrowth integration platform for photonic circuits iincorporating tunable SGDBR lasers and quantum well EAMs," IEEE Photon. Technol. Lett. 18, 1630-1632 (2006).
[CrossRef]

P. S. Cho, D. Mahgerefteh, and J. Coldhar, "All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator," IEEE Photon. Technol. Lett. 11, 1662-1664 (1999).
[CrossRef]

J. Lightwave Technol.

S. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig 1.
Fig 1.

(a) SEM image of monolithically integrated photocurrent driven wavelength converter. (b) Equivalent circuit diagram for switching elements in the PD-WC showing the QW-PIN and EAM. Arrows indicate photocurrent from the QW-PIN photodetector.

Fig 2.
Fig 2.

PD-WC converted extinction ratio and facet to facet gain at 2.5 Gb/s as a function of input power. The input and output signals are at 1548 nm and 1550 nm respectively. QW-PIN/EAM bias is -2.0V.

Fig 3.
Fig 3.

Product of the PD-WC gain and output extinction ratio as a function of input power. Input and output wavelengths are the same as in Fig. 4 as well as bias conditions. Optimal input power level is indicated.

Fig. 4.
Fig. 4.

PD-WC output extinction ratio for input signals with 4 dB ER or 10 dB ER. Back to back eye diagrams and converted etye diagrams are included. Input and output wavelengths are 1548 and 1545 nm respectively.

Fig. 5.
Fig. 5.

Broadband PD-WC output extinction as a function of applied bias using a degraded 4 dB ER input signal. Output conversion is shown for operating wavelengths of 1533nm (diamonds), 1545 nm (squares), and 1555 nm (triangles).

Fig. 6.
Fig. 6.

Wavelength converted (1548 to 1545 nm) BER measurement results for a degraded input signal with 4 dB ER. Converted ER is indicated along with power penalties. Eye diagrams are for converted (2.1 V, 12.7 dB ER) and back to back signals.

Fig. 7.
Fig. 7.

Broadband wavelength converted BER measurement for degraded input signal with 4 dB ER. For each output wavelength the bias of the PD-WC is set to achieve an output ER of 11 dB. Eye diagrams are for input signal and converted output at 1545 nm.

Fig. 8.
Fig. 8.

Broadband PD-WC re-amplification characteristics. Eye diagrams included are for back to back (4 dB ER) and converted eye diagrams for the bias conditions indicated in Fig 6.

Metrics