Abstract

Optical techniques can access a wealth of information but traditionally their resolution has been restricted by the diffraction limit. Near-field techniques, which used nanoscale apertures or nanotip electric field enhancement, have succeeded in circumventing Abbe’s law. We show that atomic resolution is theoretically achievable for tip enhanced optical microscopy. Using finite element analysis of the electromagnetic field around a small radius metallic scanning probe microscopy tip, we modelled various tip radii and materials, and an aqueous environment as well as ambient air. For a 1 nm gold tip we predict a strong red shift, and surprisingly high values for the enhancement of the intensity of scattered light – over 107. For this tip, we predict that 0.2 nm lateral resolution in optical imaging is achievable – good enough to resolve individual atomic bonds. The promise of optical data at these spatial scales offers great potential for nanometrology and nanotechnology applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988).
    [CrossRef]
  2. R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
    [CrossRef]
  3. V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
    [CrossRef]
  4. R. Hillenbrand, F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029 (2000).
    [CrossRef] [PubMed]
  5. R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001).
    [CrossRef] [PubMed]
  6. F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995).
    [CrossRef] [PubMed]
  7. A. Downes, M. E. Welland, “Photon Emission from Si(111)-(7×7) Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast,” Phys. Rev. Lett. 81, 1857 (1998).
    [CrossRef]
  8. N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
    [CrossRef] [PubMed]
  9. J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
    [CrossRef] [PubMed]
  10. I. Notingher, A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699 (2005).
    [CrossRef]
  11. A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006).
    [CrossRef] [PubMed]
  12. D.M. Wood, N.W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 256255 (1982).
    [CrossRef]
  13. A. Downes, Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 212–213, 770 (2003).
    [CrossRef]
  14. F. J. Giessibl, “Atomic resolution on Si(111)-7×7 by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett. 76, 1470 (2000).
    [CrossRef]
  15. M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
    [CrossRef]
  16. B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
    [CrossRef]

2006 (1)

A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006).
[CrossRef] [PubMed]

2005 (3)

I. Notingher, A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699 (2005).
[CrossRef]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Downes, Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 212–213, 770 (2003).
[CrossRef]

2001 (1)

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001).
[CrossRef] [PubMed]

2000 (2)

R. Hillenbrand, F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029 (2000).
[CrossRef] [PubMed]

F. J. Giessibl, “Atomic resolution on Si(111)-7×7 by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett. 76, 1470 (2000).
[CrossRef]

1998 (1)

A. Downes, M. E. Welland, “Photon Emission from Si(111)-(7×7) Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast,” Phys. Rev. Lett. 81, 1857 (1998).
[CrossRef]

1997 (2)

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
[CrossRef]

1995 (2)

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995).
[CrossRef] [PubMed]

1988 (1)

D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988).
[CrossRef]

1982 (1)

D.M. Wood, N.W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 256255 (1982).
[CrossRef]

Allen, E.

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

Alvarez, M.

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

Anderson, G.

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

Anderson, N.

N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
[CrossRef] [PubMed]

Ashcroft, N.W.

D.M. Wood, N.W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 256255 (1982).
[CrossRef]

Cronin, S.

N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
[CrossRef] [PubMed]

Downes, A.

A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006).
[CrossRef] [PubMed]

A. Downes, Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 212–213, 770 (2003).
[CrossRef]

A. Downes, M. E. Welland, “Photon Emission from Si(111)-(7×7) Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast,” Phys. Rev. Lett. 81, 1857 (1998).
[CrossRef]

Dumas, Ph.

A. Downes, Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 212–213, 770 (2003).
[CrossRef]

Dunn, R.

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

Durig, U.

D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988).
[CrossRef]

Elfick, A.

A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006).
[CrossRef] [PubMed]

I. Notingher, A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699 (2005).
[CrossRef]

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Fischer, U.

D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988).
[CrossRef]

Gerton, J.

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

Giessibl, F. J.

F. J. Giessibl, “Atomic resolution on Si(111)-7×7 by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett. 76, 1470 (2000).
[CrossRef]

Hartschuh, A.

N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001).
[CrossRef] [PubMed]

R. Hillenbrand, F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029 (2000).
[CrossRef] [PubMed]

Jovin, T.

V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
[CrossRef]

Joyce, S.

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

Keilmann, F.

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001).
[CrossRef] [PubMed]

R. Hillenbrand, F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029 (2000).
[CrossRef] [PubMed]

Khoury, J.

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

Kirsch, A.

V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
[CrossRef]

Knoll, B.

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001).
[CrossRef] [PubMed]

Lessard, G.

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

Ma, Z.

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995).
[CrossRef] [PubMed]

Notingher, I.

I. Notingher, A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699 (2005).
[CrossRef]

Novotny, L.

N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
[CrossRef] [PubMed]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Pohl, D.

D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988).
[CrossRef]

Quake, S.

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

Ren, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Rivera-Pomar, R.

V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
[CrossRef]

Salter, D.

A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006).
[CrossRef] [PubMed]

Schaaff, T.

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Shafigullin, M.

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

Subramaniam, V.

V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
[CrossRef]

Vezmar, I.

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

Wade, L

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

Welland, M. E.

A. Downes, M. E. Welland, “Photon Emission from Si(111)-(7×7) Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast,” Phys. Rev. Lett. 81, 1857 (1998).
[CrossRef]

Whetten, R.

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

Wickramasinghe, H.

F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995).
[CrossRef] [PubMed]

Wood, D.M.

D.M. Wood, N.W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 256255 (1982).
[CrossRef]

Xie, X.

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

F. J. Giessibl, “Atomic resolution on Si(111)-7×7 by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett. 76, 1470 (2000).
[CrossRef]

Appl. Surf. Sci. (1)

A. Downes, Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 212–213, 770 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, “Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes,” J. Am. Chem. Soc. 127, 2533 (2005).
[CrossRef] [PubMed]

J. Fluoresc. (1)

V. Subramaniam, A. Kirsch, R. Rivera-Pomar, T. Jovin, “Scanning Near-Field Optical Microscopy and Microspectroscopy of Green Fluorescent Protein in Intact Escherichia coli Bacteria,” J. Fluoresc. 7, 381 (1997).
[CrossRef]

J. Microsc. (2)

D. Pohl, U. Fischer, U. Durig, “Scanning Near-Field Optical Microscopy (SNOM),” J. Microsc. 152, 853 (1988).
[CrossRef]

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

I. Notingher, A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699 (2005).
[CrossRef]

A. Downes, D. Salter, A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys. Chem. B 110, 6692 (2006).
[CrossRef] [PubMed]

M. Alvarez, J. Khoury, T. Schaaff, M. Shafigullin, I. Vezmar, R. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B, 101, 3706 (1997).
[CrossRef]

J. Raman Spectrosc. (1)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Phys. Rev. B (1)

D.M. Wood, N.W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 256255 (1982).
[CrossRef]

Phys. Rev. Lett. (3)

A. Downes, M. E. Welland, “Photon Emission from Si(111)-(7×7) Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast,” Phys. Rev. Lett. 81, 1857 (1998).
[CrossRef]

J. Gerton, L Wade, G. Lessard, Z. Ma, S. Quake, “Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[CrossRef] [PubMed]

R. Hillenbrand, F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029 (2000).
[CrossRef] [PubMed]

Science (1)

F. Zenhausern, Y. Martin, H. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083 (1995).
[CrossRef] [PubMed]

Ultramicroscopy (1)

R. Dunn, E. Allen, S. Joyce, G. Anderson, X. Xie, “Near-field fluorescent imaging of single proteins,” Ultramicroscopy 57, 113 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Finite element simulation of the enhancement of the electric field amplitude around a gold tip of radius 1nm. The surrounding medium is air, and the tip is illuminated with p-polarized light of wavelength 886 nm at 45 degrees.

Fig. 2.
Fig. 2.

Spectral dependence of the enhancement of the electric field (E) at the tip apex, for gold tips of various radii. The surrounding medium is air, and the tip is illuminated with p-polarized light at 45 degrees. Values of the enhancement of the intensity of scattered light, E4, are also plotted on the right of the graph.

Fig. 3.
Fig. 3.

Spectral dependence of the enhancement of the electric field (E) at the tip apex, for 1 nm radius tips of various metals in air, illuminated with p-polarized light at 45 degrees. The curve for copper has a maximum in E of 136, at 886 nm. Values of the enhancement of the intensity of scattered light, E4, are also plotted on the right of the graph.

Fig. 4.
Fig. 4.

Spectral dependence of the enhancement of the electric field (E) at the tip apex, for 1 nm radius tips of various metals in water, illuminated with p-polarized light at 45 degrees. The curve for copper has a maximum in E of 208, at 1378 nm. Values of the enhancement of the intensity of scattered light, E4, are also plotted on the right of the graph.

Metrics