Abstract

Optical waveguide switches based on spatial arrangements inspired by electromagnetic induced transparency (EIT) concepts are presented. Interferometric control of optical signal by an optical gate is accomplished in three configurations. The first is employing a direct spatial version of EIT, the second is exploiting space reciprocity to accomplish performance not achievable in the time domain EIT and finally a novel version of EIT, using tunneling, is transformed into the spatial domain. For all configurations – closed form analysis as well as actual device simulation are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Optical electronics in modern communications (Oxford University Press, New York, c1997).
  2. G. P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, New York, c2002).
    [Crossref]
  3. S. E. Harris, “Electromagnetically induced transparency,” Physics Today 5036–42 (1997).
    [Crossref]
  4. A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
    [Crossref]
  5. P. Ginzburg and M. Orenstein, “EIT with Tunneling for Slow Light Generation,” (QMD6), Quantum Electronics and Laser Science Conference, Long Beach, California21–26 May, 2006
  6. J. Khurgin, “Light slowing down in Moire′ fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
    [Crossref]
  7. L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
    [Crossref]
  8. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13, 9381–9387 (2005).
    [Crossref] [PubMed]
  9. H. Schmidt and R. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” App. Phys. Lett. 76, 3173–3175 (2000).
    [Crossref]
  10. A. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2004).
    [Crossref]
  11. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).
  12. W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
    [Crossref]

2005 (1)

2004 (2)

A. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2004).
[Crossref]

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
[Crossref]

2001 (1)

A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
[Crossref]

2000 (2)

J. Khurgin, “Light slowing down in Moire′ fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
[Crossref]

H. Schmidt and R. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” App. Phys. Lett. 76, 3173–3175 (2000).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Physics Today 5036–42 (1997).
[Crossref]

1992 (1)

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, New York, c2002).
[Crossref]

Brown, A.

Chaudhuri, S.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Chu, S.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Ginzburg, P.

P. Ginzburg and M. Orenstein, “EIT with Tunneling for Slow Light Generation,” (QMD6), Quantum Electronics and Laser Science Conference, Long Beach, California21–26 May, 2006

Greenberg, M.

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Physics Today 5036–42 (1997).
[Crossref]

Huang, W.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Ilchenko, V.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
[Crossref]

Kenis, A.

A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
[Crossref]

Khurgin, J.

J. Khurgin, “Light slowing down in Moire′ fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
[Crossref]

Maleki, L.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
[Crossref]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).

Matsko, A.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
[Crossref]

Moiseyev, N.

A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
[Crossref]

Orenstein, M.

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13, 9381–9387 (2005).
[Crossref] [PubMed]

A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
[Crossref]

P. Ginzburg and M. Orenstein, “EIT with Tunneling for Slow Light Generation,” (QMD6), Quantum Electronics and Laser Science Conference, Long Beach, California21–26 May, 2006

Ram, R.

H. Schmidt and R. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” App. Phys. Lett. 76, 3173–3175 (2000).
[Crossref]

Savchenkov, A.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
[Crossref]

Schmidt, H.

H. Schmidt and R. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” App. Phys. Lett. 76, 3173–3175 (2000).
[Crossref]

Vorobeichik, I.

A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
[Crossref]

Xiao, M.

Xu, C.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Yariv, A.

A. Yariv, Optical electronics in modern communications (Oxford University Press, New York, c1997).

App. Phys. Lett. (1)

H. Schmidt and R. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” App. Phys. Lett. 76, 3173–3175 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 10 pp. 1321–1328 (2001).
[Crossref]

J. Lightwave Technol. (1)

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, “The finite-difference vector beam propagation method. analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, “Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 6 (2004).
[Crossref]

A. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2004).
[Crossref]

Phys. Rev. A (1)

J. Khurgin, “Light slowing down in Moire′ fiber gratings and its implications for nonlinear optics,” Phys. Rev. A 62, 013821 (2000).
[Crossref]

Physics Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Physics Today 5036–42 (1997).
[Crossref]

Other (4)

P. Ginzburg and M. Orenstein, “EIT with Tunneling for Slow Light Generation,” (QMD6), Quantum Electronics and Laser Science Conference, Long Beach, California21–26 May, 2006

A. Yariv, Optical electronics in modern communications (Oxford University Press, New York, c1997).

G. P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, New York, c2002).
[Crossref]

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Coherent EIT configuration (b) Schematics of an equivalent spatial switching device (c) The propagation constants diagram in the interaction region. m and k are the corresponding coupling coefficients.

Fig. 2.
Fig. 2.

Simulation results (a) Schematic top view of the simulated device; The total electric field amplitude and the power at the three modes are depicted for (b) “off” – no output signal.; (c) “on” – signal out

Fig. 3.
Fig. 3.

Level diagram of the back reflection switch (non participating modes – dashed lines)

Fig. 4.
Fig. 4.

(a). “off” – all signal reflected. (b) “on”- signal transmitted

Fig. 5.
Fig. 5.

Simulation results (a) Schematics top view of the simulated device; the total electric field amplitude and the power at the three waveguides are depicted for (b) “off” – no output signal; (c) “on” – signal out

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

z A = j k C 2 B = j m C z C = j k A + j m B
A ( 0 ) = 1 C ( 0 ) = 0
A ( z ) = 1 + j C 0 k n ( 1 cos ( n z ) ) B ( z ) = k m j C 0 ( k 2 m n + m n cos ( n z ) ) C ( z ) = C 0 sin ( n z )
k A ( z = 0 ) + m B ( z = 0 ) = 0
C 0 = 0
A ( z ) = 1 B ( z ) = k m C ( z ) = 0
k A ( z = 0 ) m B ( z = 0 ) = 0
C 0 = 2 j k n
A ( z ) = 1 2 k 2 n 2 ( 1 cos ( n z ) ) B ( z ) = k m + 2 k n ( k 2 m n + m n cos ( n z ) ) C ( z ) = 2 j k n sin ( n z )
A ( L device ) = 0 1 cos ( n L device ) = k 2 m 2 2 k 2 1
B ( L device ) = k 2 m 2 k m , C ( L device ) = j k 2 m 2 k n
z A = j k C z B = j m C z C = j k A j m B
A ( 0 ) = 1 C ( L ) = 0
A ( z ) = 1 + j C 0 k n ( cosh ( n ( z L ) ) cosh ( n L ) )
B ( z ) = k m + j C 0 n ( m cosh ( n ( z L ) ) + k 2 m cosh ( n L ) )
C ( z ) = C 0 sinh ( n ( z L ) )
k A ( z = 0 ) + m B ( z = 0 ) = 0 ; C 0 = 0
A ( z ) = 1 B ( z ) = k m C ( z ) = 0
k A ( z = 0 ) m B ( z = 0 ) = 0 ; C 0 = 2 j k n 1 cosh ( n L )
A ( z ) = 1 + 2 k 2 n 2 ( cosh ( n ( z L ) ) cosh ( n L ) ) cosh ( n L )
B ( z ) = k ( k 2 m 2 ) m n 2 + 2 k m n 2 cosh ( n ( z L ) ) cosh ( n L )
C ( z ) = 2 j k n sinh ( n ( z L ) ) cosh ( n L )
A ( z = L ) = 0 m 2 k 2 n 2 = 0 k = m

Metrics