Abstract

Optical waveguide switches based on spatial arrangements inspired by electromagnetic induced transparency (EIT) concepts are presented. Interferometric control of optical signal by an optical gate is accomplished in three configurations. The first is employing a direct spatial version of EIT, the second is exploiting space reciprocity to accomplish performance not achievable in the time domain EIT and finally a novel version of EIT, using tunneling, is transformed into the spatial domain. For all configurations – closed form analysis as well as actual device simulation are presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Optical electronics in modern communications (Oxford University Press, New York, 1997).
  2. G. P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, New York, 2002).
    [CrossRef]
  3. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50,36-42 (1997).
    [CrossRef]
  4. A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
    [CrossRef]
  5. P. Ginzburg and M. Orenstein, "EIT with Tunneling for Slow Light Generation," (QMD6), Quantum Electronics and Laser Science Conference, Long Beach, California 21-26 May, 2006.
  6. J. Khurgin, "Light slowing down in Moire´ fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
    [CrossRef]
  7. L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
    [CrossRef]
  8. M. Greenberg and M. Orenstein, "Multimode add-drop multiplexing by adiabatic linearly tapered coupling," Opt. Express 13, 9381-9387 (2005).
    [CrossRef] [PubMed]
  9. H. Schmidt, and R. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
    [CrossRef]
  10. A. Brown, and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699-701 (2004).
    [CrossRef]
  11. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).
  12. W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
    [CrossRef]

2005 (1)

2004 (2)

A. Brown, and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699-701 (2004).
[CrossRef]

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
[CrossRef]

2001 (1)

A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

2000 (2)

J. Khurgin, "Light slowing down in Moire´ fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
[CrossRef]

H. Schmidt, and R. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

1997 (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50,36-42 (1997).
[CrossRef]

1992 (1)

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
[CrossRef]

Brown, A.

Chaudhuri, S.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
[CrossRef]

Chu, S.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
[CrossRef]

Greenberg, M.

Harris, S. E.

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50,36-42 (1997).
[CrossRef]

Huang, W.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
[CrossRef]

Ilchenko, V.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
[CrossRef]

Kenis, A.

A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Khurgin, J.

J. Khurgin, "Light slowing down in Moire´ fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Maleki, L.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
[CrossRef]

Matsko, A.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
[CrossRef]

Moiseyev, N.

A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Orenstein, M.

M. Greenberg and M. Orenstein, "Multimode add-drop multiplexing by adiabatic linearly tapered coupling," Opt. Express 13, 9381-9387 (2005).
[CrossRef] [PubMed]

A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Ram, R.

H. Schmidt, and R. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

Savchenkov, A.

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
[CrossRef]

Schmidt, H.

H. Schmidt, and R. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

Vorobeichik, I.

A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Xiao, M.

Xu, C.

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

H. Schmidt, and R. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Kenis, I. Vorobeichik, M. Orenstein and N. Moiseyev, "Non-evanescent adiabatic directional coupler," IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

J. Lightwave Technol. (1)

W. Huang, C. Xu, S. Chu, and S. Chaudhuri, "The finite-difference vector beam propagation method. analysis and assessment,' J. Lightwave Technol. 10, 295-305 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

L. Maleki, A. Matsko, A. Savchenkov, and V. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonators," Opt. Lett. 29, 6 (2004).
[CrossRef]

A. Brown, and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699-701 (2004).
[CrossRef]

Phys. Rev. A (1)

J. Khurgin, "Light slowing down in Moire´ fiber gratings and its implications for nonlinear optics," Phys. Rev. A 62, 013821 (2000).
[CrossRef]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50,36-42 (1997).
[CrossRef]

Other (4)

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991).

P. Ginzburg and M. Orenstein, "EIT with Tunneling for Slow Light Generation," (QMD6), Quantum Electronics and Laser Science Conference, Long Beach, California 21-26 May, 2006.

A. Yariv, Optical electronics in modern communications (Oxford University Press, New York, 1997).

G. P. Agrawal, Fiber-optic communication systems (Wiley-Interscience, New York, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Coherent EIT configuration (b) Schematics of an equivalent spatial switching device (c) The propagation constants diagram in the interaction region. m and k are the corresponding coupling coefficients.

Fig. 2.
Fig. 2.

Simulation results (a) Schematic top view of the simulated device; The total electric field amplitude and the power at the three modes are depicted for (b) “off” – no output signal.; (c) “on” – signal out

Fig. 3.
Fig. 3.

Level diagram of the back reflection switch (non participating modes – dashed lines)

Fig. 4.
Fig. 4.

(a). “off” – all signal reflected. (b) “on”- signal transmitted

Fig. 5.
Fig. 5.

Simulation results (a) Schematics top view of the simulated device; the total electric field amplitude and the power at the three waveguides are depicted for (b) “off” – no output signal; (c) “on” – signal out

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

z A = j k C 2 B = j m C z C = j k A + j m B
A ( 0 ) = 1 C ( 0 ) = 0
A ( z ) = 1 + j C 0 k n ( 1 cos ( n z ) ) B ( z ) = k m j C 0 ( k 2 m n + m n cos ( n z ) ) C ( z ) = C 0 sin ( n z )
k A ( z = 0 ) + m B ( z = 0 ) = 0
C 0 = 0
A ( z ) = 1 B ( z ) = k m C ( z ) = 0
k A ( z = 0 ) m B ( z = 0 ) = 0
C 0 = 2 j k n
A ( z ) = 1 2 k 2 n 2 ( 1 cos ( n z ) ) B ( z ) = k m + 2 k n ( k 2 m n + m n cos ( n z ) ) C ( z ) = 2 j k n sin ( n z )
A ( L device ) = 0 1 cos ( n L device ) = k 2 m 2 2 k 2 1
B ( L device ) = k 2 m 2 k m , C ( L device ) = j k 2 m 2 k n
z A = j k C z B = j m C z C = j k A j m B
A ( 0 ) = 1 C ( L ) = 0
A ( z ) = 1 + j C 0 k n ( cosh ( n ( z L ) ) cosh ( n L ) )
B ( z ) = k m + j C 0 n ( m cosh ( n ( z L ) ) + k 2 m cosh ( n L ) )
C ( z ) = C 0 sinh ( n ( z L ) )
k A ( z = 0 ) + m B ( z = 0 ) = 0 ; C 0 = 0
A ( z ) = 1 B ( z ) = k m C ( z ) = 0
k A ( z = 0 ) m B ( z = 0 ) = 0 ; C 0 = 2 j k n 1 cosh ( n L )
A ( z ) = 1 + 2 k 2 n 2 ( cosh ( n ( z L ) ) cosh ( n L ) ) cosh ( n L )
B ( z ) = k ( k 2 m 2 ) m n 2 + 2 k m n 2 cosh ( n ( z L ) ) cosh ( n L )
C ( z ) = 2 j k n sinh ( n ( z L ) ) cosh ( n L )
A ( z = L ) = 0 m 2 k 2 n 2 = 0 k = m

Metrics