Abstract

We demonstrate all-optical wavelength conversion in a 5 cm As2S3 chalcogenide glass rib waveguide with 5.4 ps pulses over a wavelength range of 10 nm near 1550 nm. We present frequency resolved optical gating (FROG) measurements that show good converted pulse integrity in terms of amplitude and phase in the frequency and time domains. The short interaction length ensures that dispersion induced walkoff does not hinder the conversion range of the device.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
    [CrossRef]
  2. Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004).
    [CrossRef]
  3. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  4. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  5. F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, "Semiconductor devices for all-optical regeneration," in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41-42.
  6. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
    [CrossRef]
  7. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef] [PubMed]
  8. V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
    [CrossRef] [PubMed]
  9. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
    [CrossRef] [PubMed]
  10. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
    [CrossRef]
  11. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  12. M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
    [CrossRef]
  13. D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, "Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber," Opt. Express 13, 2439-2443 (2005).
    [CrossRef] [PubMed]
  14. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  15. B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
    [CrossRef]
  16. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]
  17. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  18. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
    [CrossRef] [PubMed]
  19. N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
    [CrossRef] [PubMed]

2006 (4)

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (3)

2003 (3)

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

2002 (1)

2000 (1)

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

1997 (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Aggarwal, I. D.

Almeida, V. R.

Asobe, M.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Baker, N. J.

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
[CrossRef] [PubMed]

Balmefrezol, E.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Bennion, I.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004).
[CrossRef]

Blumenthal, D. J.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Brindel, P.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Eggleton, B. J.

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

Foster, M. A.

Fu, L.

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

Fu, L. B.

Gaeta, A. L.

Galstian, T. V.

Gray, A.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004).
[CrossRef]

Harbold, J. M.

Hasegawa, T.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
[CrossRef] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

Hodelin, J.

Holzlohner, R.

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Huang, Z. J.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004).
[CrossRef]

Ilday, F. O.

Jarvis, R.

Khrushchev, I.

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004).
[CrossRef]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
[CrossRef] [PubMed]

Lavigne, B.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Leclerc, O.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Lee, H. W.

Lee, J. H.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
[CrossRef] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

Lenz, G.

Li, W. T.

Lipson, M.

Littler, I. C.

Littler, I. C. M.

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Luther-Davies, B.

Madsen, N.

Manolatou, C.

Menyuk, C. R.

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Moss, D. J.

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

Nagashima, T.

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
[CrossRef] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

Nguyen, V. Q.

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
[CrossRef] [PubMed]

Ohlen, P.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Olsson, B. E.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Panepucci, R. R.

Pelusi, M.

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

Pierre, L.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Plotnichenko, V. G.

Rau, L.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Rochette, M.

Rode, A.

Rouvillain, D.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Ruan, Y. L.

Sanghera, J.

Sanghera, J. S.

Schmidt, B. S.

Seguineau, F.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

Sharping, J. E.

Shaw, L. B.

Shokooh-Saremi, M.

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Sinkin, O. V.

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Slusher, R. E.

Smolnikov, I. V.

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005).
[CrossRef] [PubMed]

Ta'eed, V. G.

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free wavelength conversion in highly nonlinear singlemode As-Se Chalcogenide Fiber," Opt. Express, Accepted (2006).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

Tanemura, T.

Turner, A. C.

Wei, D. P.

Wise, F. W.

Zohrabyan, A.

Zweck, J.

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

Electron. Lett. (1)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41, 918-919 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004).
[CrossRef]

J Lightwave Technol. (2)

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J Lightwave Technol. 21, 2779-2790 (2003).
[CrossRef]

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

J. Opt. Soc. Am B (1)

M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am B 23, 1323-1331 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Fiber Technol. (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997).
[CrossRef]

Opt. Lett. (4)

Other (1)

F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, "Semiconductor devices for all-optical regeneration," in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41-42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of wavelength conversion by cross phase modulation

Fig. 2.
Fig. 2.

Chalcogenide glass (As2S3) waveguide. (a) Schematic, (b) scanning electron micrograph (SEM) and (c) simulated mode profile.

Fig. 3.
Fig. 3.

Experimental setup for demonstrating cross phase modulation based wavelength conversion.

Fig. 4.
Fig. 4.

(a) Experimental and (b) simulated unfiltered output spectra of signal from waveguide showing both pulsed pump and three different CW probes with XPM sidebands imprinted on them. (c) Experimental filtered output spectra of device leaving behind only a single sideband.

Fig. 5.
Fig. 5.

Frequency resolved optical gating (FROG) results for both the temporal response (right) and spectrum (left) of the input and output pulses.

Metrics