R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[Crossref]
J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]
M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 16, 2526–2528 (2004).
[Crossref]
F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, “Semiconductor devices for all-optical regeneration,” in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41–42.
B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 16, 2526–2528 (2004).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J Lightwave Technol. 21, 61–68 (2003).
[Crossref]
Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 16, 2526–2528 (2004).
[Crossref]
Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 16, 2526–2528 (2004).
[Crossref]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]
[PubMed]
V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref]
[PubMed]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref]
[PubMed]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J Lightwave Technol. 21, 61–68 (2003).
[Crossref]
F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, “Semiconductor devices for all-optical regeneration,” in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41–42.
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]
F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, “Semiconductor devices for all-optical regeneration,” in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41–42.
B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]
L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref]
[PubMed]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[Crossref]
J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J Lightwave Technol. 21, 61–68 (2003).
[Crossref]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, “Semiconductor devices for all-optical regeneration,” in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41–42.
O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J Lightwave Technol. 21, 61–68 (2003).
[Crossref]
J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre,” Electron. Lett. 41, 918–919 (2005).
[Crossref]
Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, “10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror,” IEEE Photon. Technol. Lett. 16, 2526–2528 (2004).
[Crossref]
B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846–848 (2000).
[Crossref]
O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J Lightwave Technol. 21, 2779–2790 (2003).
[Crossref]
O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J Lightwave Technol. 21, 61–68 (2003).
[Crossref]
M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am B 23, 1323–1331 (2006).
[Crossref]
Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref]
[PubMed]
D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, “Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13, 2439–2443 (2005).
[Crossref]
[PubMed]
L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13, 7637–7644 (2005).
[Crossref]
[PubMed]
A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]
[PubMed]
N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides,” Opt. Express 14, 9451–9459 (2006).
[Crossref]
[PubMed]
M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]
V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[Crossref]
[PubMed]
J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]
V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304 (2003).
[Crossref]
[PubMed]
J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30, 1267–1269 (2005).
[Crossref]
[PubMed]
V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “Error Free Wavelength Conversion in Highly Nonlinear Singlemode As-Se Chalcogenide Fiber,” Opt. Express, Accepted (2006).
[Crossref]
[PubMed]
F. Ohman, S. Bischoff, B. Tromborg, and J. Mork, “Semiconductor devices for all-optical regeneration,” in Proceedings of 2003 International Conference on Transparent Optical Networks, M. Marciniak, ed. (Warsaw, Poland, 2003), pp. 41–42.