Abstract

All fiber electro-optic modulation using a polarimetric cell based on an electro-optic fiber with internal Pb-Sn electrodes was demonstrated. For the polarimetric cell, the electro-optic fiber with two 149 cm long internal electrodes was fabricated by injection of a molten Pb-Sn alloy into the holes of the fiber. The characteristics of the modulation were explained by the electric field induced phase retardation due to the polarization dependent electro-optic Kerr effect. The difference in the effective second order nonlinearity between TM and TE polarization directions was obtained to be 0.0035 pm/V at the applied DC voltage of 6.5 kV.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
    [CrossRef]
  3. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002).
    [CrossRef]
  4. A. Claesson, S. Smuk, H. Arsalane, W. Margulis, T. Naterstad, E. Zimmer, and A. Malthe-Sorenssen, "Internal electrode fiber polarization controller," in Optical Fiber Communication Conference, Vol. 1 of 2003 OSA Technical Digest Series (Optical Society of America, 2003) p. 39.
  5. M. Myren and W. Margulis, "All-fiber electrooptical mode-locking and tuning," IEEE Photon. Technol. Lett. 17, 2047-2049 (2005).
    [CrossRef]
  6. W. Margulis and N. Myren, "Progress on fiber poling and devices," in Optical Fiber Communication Conference, Vol. 4 of 2005 OSA Technical Digest Series (Optical Society of America, 2005) p. 3.
  7. O. Tarasenko, N. Myren, W. Margulis, and I. C. S. Carvalho, "All-fiber electrooptical polarization control," in Optical Fiber Communication Conference, 2006 OSA Technical Digest Series (Optical Society of America, 2006) paper OWE3.
  8. A. Michie, I. Bassett, and J. Haywood, "Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer," Meas. Sci. Technol. 7, 1229-1233 (2006).
    [CrossRef]
  9. T. Fujiwara, D. Wong, and S. Fleming, "Large electro optic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
    [CrossRef]
  10. M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
    [CrossRef]
  11. F. C. Garcia, L. Vogelaar, and R. Kashyap, "Poling of channel waveguide," Opt. Express 11, 3041-3047 (2003).
    [CrossRef] [PubMed]
  12. N. Godbout, S. Lacroix, Y. Quiquempois, G. Martinelli, and P. Bernage, "Measurement and calculation of electrostrictive effects in a twin-hole silica glass fiber," J. Opt. Soc. Am. B 17, 1-5 (2000).
    [CrossRef]
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (New York, Wiley, 1991) chaps. 6 and 19.
  14. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, "Dynamics of second-harmonic generation in fused silica," J. Opt. Soc. Am. B 11, 665-669 (1994).
    [CrossRef]
  15. S. Kielich, "Optical second-harmonic generation by electrically polarized isotropic media," IEEE J. Quantum Electron. QE-5, 562-568 (1969).
    [CrossRef]
  16. C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
    [CrossRef]

2006

A. Michie, I. Bassett, and J. Haywood, "Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer," Meas. Sci. Technol. 7, 1229-1233 (2006).
[CrossRef]

2005

M. Myren and W. Margulis, "All-fiber electrooptical mode-locking and tuning," IEEE Photon. Technol. Lett. 17, 2047-2049 (2005).
[CrossRef]

2003

2002

M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002).
[CrossRef]

C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
[CrossRef]

2000

1996

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

1995

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

T. Fujiwara, D. Wong, and S. Fleming, "Large electro optic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

1994

1991

1969

S. Kielich, "Optical second-harmonic generation by electrically polarized isotropic media," IEEE J. Quantum Electron. QE-5, 562-568 (1969).
[CrossRef]

Abe, M.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

Bassett, I.

A. Michie, I. Bassett, and J. Haywood, "Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer," Meas. Sci. Technol. 7, 1229-1233 (2006).
[CrossRef]

Berlemont, D.

Bernage, P.

Brueck, S. R. J.

Claesson, A.

Fleming, S.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

T. Fujiwara, D. Wong, and S. Fleming, "Large electro optic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

Fokine, M.

Fujiwara, T.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

T. Fujiwara, D. Wong, and S. Fleming, "Large electro optic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

Garcia, F. C.

Genty, G.

C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
[CrossRef]

Godbout, N.

Hattori, K.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

Haywood, J.

A. Michie, I. Bassett, and J. Haywood, "Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer," Meas. Sci. Technol. 7, 1229-1233 (2006).
[CrossRef]

Himeno, A.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

Kashyap, R.

Kielich, S.

S. Kielich, "Optical second-harmonic generation by electrically polarized isotropic media," IEEE J. Quantum Electron. QE-5, 562-568 (1969).
[CrossRef]

Kitagawa, T.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

Kjellberg, L.

Kristensen, M.

C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
[CrossRef]

Krummenacher, L.

Lacroix, S.

Marckmann, C. J.

C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
[CrossRef]

Margulis, W.

Martinelli, G.

Michie, A.

A. Michie, I. Bassett, and J. Haywood, "Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer," Meas. Sci. Technol. 7, 1229-1233 (2006).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Myren, M.

M. Myren and W. Margulis, "All-fiber electrooptical mode-locking and tuning," IEEE Photon. Technol. Lett. 17, 2047-2049 (2005).
[CrossRef]

Nilsson, L. E.

Ohmori, Y.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

Poole, S.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

Quiquempois, Y.

Ren, Y.

C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
[CrossRef]

Sceats, M.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

Vogelaar, L.

Wong, D.

T. Fujiwara, D. Wong, and S. Fleming, "Large electro optic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

Zhao, Y.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

Electron. Lett.

M. Abe, T. Kitagawa, K. Hattori, A. Himeno, and Y. Ohmori, "Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate," Electron. Lett. 32, 893-894 (1996).
[CrossRef]

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, "Electro-optic modulation in germanosilicate fiber with UV-excited poling," Electron. Lett. 31, 573-575 (1995).
[CrossRef]

IEEE J. Quantum Electron.

S. Kielich, "Optical second-harmonic generation by electrically polarized isotropic media," IEEE J. Quantum Electron. QE-5, 562-568 (1969).
[CrossRef]

IEEE Photon. Technol. Lett.

C. J. Marckmann, Y. Ren, G. Genty, and M. Kristensen, "Strength and symmetry of the third-order nonlinearity during poling of glass waveguides," IEEE Photon. Technol. Lett. 14, 1294 (2002).
[CrossRef]

M. Myren and W. Margulis, "All-fiber electrooptical mode-locking and tuning," IEEE Photon. Technol. Lett. 17, 2047-2049 (2005).
[CrossRef]

T. Fujiwara, D. Wong, and S. Fleming, "Large electro optic modulation in a thermally-poled germanosilicate fiber," IEEE Photon. Technol. Lett. 7, 1177-1179 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

A. Michie, I. Bassett, and J. Haywood, "Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer," Meas. Sci. Technol. 7, 1229-1233 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Claesson, S. Smuk, H. Arsalane, W. Margulis, T. Naterstad, E. Zimmer, and A. Malthe-Sorenssen, "Internal electrode fiber polarization controller," in Optical Fiber Communication Conference, Vol. 1 of 2003 OSA Technical Digest Series (Optical Society of America, 2003) p. 39.

W. Margulis and N. Myren, "Progress on fiber poling and devices," in Optical Fiber Communication Conference, Vol. 4 of 2005 OSA Technical Digest Series (Optical Society of America, 2005) p. 3.

O. Tarasenko, N. Myren, W. Margulis, and I. C. S. Carvalho, "All-fiber electrooptical polarization control," in Optical Fiber Communication Conference, 2006 OSA Technical Digest Series (Optical Society of America, 2006) paper OWE3.

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (New York, Wiley, 1991) chaps. 6 and 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross-section of the optical fiber (a) before and (b) after the formation of the 37% Pb-63% Sn electrodes. The bright core was shown at the center of the fiber.

Fig. 2.
Fig. 2.

Optical transmission spectra of the electro-optic fiber with and without the 37% Pb-63% Sn internal electrodes.

Fig. 3.
Fig. 3.

Schematic setup of the all fiber polarimetric modulation device based on the electro-optic fiber with the internal electrodes.

Fig. 4.
Fig. 4.

Modulated optical signal of the polarimetric modulation device based on the electro-optic fiber applied with the constant peak-to-peak AC modulation voltage of 560 Vpp and different DC bias voltages from 0 to 8 kV at the modulation frequency of 20 kHz.

Fig. 5.
Fig. 5.

(a) Modulated optical signals with the applied frequencies of 10, 30, and 50 kHz, respectively, and (b) peak-to-peak intensity of optical signal with the frequency of the modulation AC signal in the all fiber polarimetric modulation device. The peak-to-peak intensity of the AC voltage and the DC voltage were fixed at constant 560 Vpp and 5 kV, respectively.

Fig. 6.
Fig. 6.

(a) Modulated optical signals with the peak-to-peak AC voltages of 560, 840, and 1300 Vpp, respectively, and (b) the peak-to-peak intensity of optical modulation with the AC voltage in the all fiber polarimetric modulation device. The modulation frequency of the AC signal and the DC voltage were fixed at 20 kHz and 6.5 kV, respectively. The optical intensity was normalized by the maximum of the optical signal.

Fig. 7.
Fig. 7.

Phase shift with the applied DC voltage in the MZI by the refractive index change in an electro-optic fiber with an internal Pb-Sn electrode and its fitted curve

Fig. 8.
Fig. 8.

Peak-to-peak intensity of modulated optical signal with the applied DC voltage and its fitted curve

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n n 0 = 3 χ ( 3 ) E 2 ( 2 n 0 ) = χ eff ( 2 ) E ( 2 n 0 )
χ eff , TM ( 2 ) χ eff , TE ( 2 ) = γ 1 ,
T = sin 2 ( Γ 2 )
= sin 2 [ π ( n TM n TE ) L λ 0 ]
= sin 2 [ Γ 0 2 + ( 3 π L ( 1 1 γ ) χ ( 3 ) ) ( 2 n 0 λ 0 d 2 ) · V 2 ]
dT dV ~ sin [ Γ 0 + ( 3 π L ( 1 1 γ ) χ ( 3 ) ) ( n 0 λ 0 d 2 ) · V 2 ] · V .

Metrics