Abstract

We demonstrate that strongly anisotropic planar dielectric systems can be used to create waveguides supporting modes with extremely slow group velocity. Furthermore, we show that such systems can be used for 3D imaging, with a potential for subwavelength resolution.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today,  57, 37-43 (2004).
    [CrossRef]
  2. D. R. Smith, D. Schurig and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
    [CrossRef]
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  4. V. G. Veselago, "The electrodynamics of substances with simultaneously negative value of ∑ and , Soviet Physics Uspekhi 10, 509-514 (1968).
    [CrossRef]
  5. P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
    [CrossRef] [PubMed]
  6. P. A. Belov, "Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis," Microwave Opt. Technol. Lett. 37259-263 (2003).
    [CrossRef]
  7. V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71201101(R) (2005).
    [CrossRef]
  8. V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
    [CrossRef]
  9. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
    [CrossRef]
  10. M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
    [CrossRef] [PubMed]
  11. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903, (2003).
    [CrossRef] [PubMed]
  12. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  13. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed., (Reed Ltd., Oxford, 1984).
  14. A . Alú, N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004).
    [CrossRef]
  15. L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, "Terahertz non-magnetic negative-refraction system," submitted to Applied Physics Letters.
  16. G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
    [CrossRef]
  17. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
    [CrossRef]
  18. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  19. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, "Non-magnetic nano-composites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006).
    [CrossRef]
  20. D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc. Am. B 23, 461-467 (2006).
    [CrossRef]
  21. K. J. Webb and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130- 2132 (2006).
    [CrossRef] [PubMed]
  22. G. Shvets, Y. Urzhumov, D. Korobkin, "Enhanced near-field resolution in mid-infrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
    [CrossRef]
  23. W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127132 (1959).
    [CrossRef]
  24. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  25. V. M. Agranovich and D. L. Mills (eds.), Surface Polaritons (North Holland Publishing Company, Amsterdam, 1982).
  26. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
    [CrossRef]
  27. T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72235115 (2005).
    [CrossRef]
  28. L. V. Alekseyev and E. E. Narimanov, "3D imaging with planar dielectric lens," Proceedings CLEO/QELS, QWE4 (2006).
  29. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]

2006 (4)

2005 (5)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72235115 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
[CrossRef]

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

2004 (3)

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today,  57, 37-43 (2004).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

A . Alú, N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004).
[CrossRef]

2003 (5)

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903, (2003).
[CrossRef] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
[CrossRef] [PubMed]

P. A. Belov, "Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis," Microwave Opt. Technol. Lett. 37259-263 (2003).
[CrossRef]

2002 (1)

D. R. Smith, D. Schurig and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

2001 (2)

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative value of ∑ and , Soviet Physics Uspekhi 10, 509-514 (1968).
[CrossRef]

1959 (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127132 (1959).
[CrossRef]

Alekseyev, L. V.

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

Alú, A

A . Alú, N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Belov, P. A.

P. A. Belov, "Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis," Microwave Opt. Technol. Lett. 37259-263 (2003).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903, (2003).
[CrossRef] [PubMed]

Blaikie, R. J.

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903, (2003).
[CrossRef] [PubMed]

da Costa, J. A. P.

T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72235115 (2005).
[CrossRef]

Dumelow, T.

T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72235115 (2005).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Elser, J.

Engheta, N.

A . Alú, N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004).
[CrossRef]

Fan, S.

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Freire, V. N.

T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72235115 (2005).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
[CrossRef]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Khurgin, J. B.

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127132 (1959).
[CrossRef]

Korobkin, D.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903, (2003).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Lu, W. T.

P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Melville, D. O. S.

Narimanov, E. E.

Parimi, P. V.

P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today,  57, 37-43 (2004).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

D. R. Smith, D. Schurig and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

Shamonina, E.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
[CrossRef]

Shvets, G.

G. Shvets, Y. Urzhumov, D. Korobkin, "Enhanced near-field resolution in mid-infrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
[CrossRef]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

Smith, D. R.

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today,  57, 37-43 (2004).
[CrossRef]

D. R. Smith, D. Schurig and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

Solja?ci´c, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Solymar, L.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127132 (1959).
[CrossRef]

Sridhar, S.

P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
[CrossRef] [PubMed]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Urzhumov, Y.

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative value of ∑ and , Soviet Physics Uspekhi 10, 509-514 (1968).
[CrossRef]

Vodo, P.

P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
[CrossRef] [PubMed]

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127132 (1959).
[CrossRef]

Wangberg, R.

Webb, K. J.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Yang, M.

Yanik, M. F.

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. R. Smith, D. Schurig and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

Electron. Lett. (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Imaging, compression and Poynting vector streamlines for negative permittivity materials," Electron. Lett. 371243-1244 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A . Alú, N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004).
[CrossRef]

J. Mod. Opt. (2)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

J. Opt. Soc. Am. B (4)

Microwave Opt. Technol. Lett. (1)

P. A. Belov, "Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis," Microwave Opt. Technol. Lett. 37259-263 (2003).
[CrossRef]

Nature (3)

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
[CrossRef]

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426404 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127132 (1959).
[CrossRef]

Phys. Rev. B (2)

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72235115 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaˇci´c, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903, (2003).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Physics Today (1)

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Physics Today,  57, 37-43 (2004).
[CrossRef]

Soviet Physics Uspekhi (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative value of ∑ and , Soviet Physics Uspekhi 10, 509-514 (1968).
[CrossRef]

Other (5)

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed., (Reed Ltd., Oxford, 1984).

V. M. Agranovich and D. L. Mills (eds.), Surface Polaritons (North Holland Publishing Company, Amsterdam, 1982).

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71201101(R) (2005).
[CrossRef]

L. V. Alekseyev, V. A. Podolskiy, and E. E. Narimanov, "Terahertz non-magnetic negative-refraction system," submitted to Applied Physics Letters.

L. V. Alekseyev and E. E. Narimanov, "3D imaging with planar dielectric lens," Proceedings CLEO/QELS, QWE4 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Isofrequency curve and relative direction of the wave vector k⃗ and the Poynting vector S⃗ for (a) isotropic material, (b) material with εx ,εz >0, (c) material with εx <0, εz >0.

Fig. 2.
Fig. 2.

(a) Dielectric planar waveguide schematics. (b) Guided mode dispersion curves for anisotropic core with εx <0, εz >0 (εd =1, εx =10, εz =-2). Note that we do not draw the dispersion curves for low frequencies, as spatial dispersion effects are expected to significantly affect the dielectric response in that regime.

Fig. 3.
Fig. 3.

(a) Artificially structured material: a stack of alternating layers with ε 1>0, ε 2<0 and with layer thickness dλ. (b) Dielectric constants (real parts) for the SiC/SiO2 stack. Shaded region indicates the regime where εx <0, εz >0.

Fig. 4.
Fig. 4.

(a) Dispersion curves for a waveguide with air cladding (εd =1) and SiC/SiO2 metamaterial core. The characteristic planar waveguide dispersion curves are evident in the region ω/ω* ≳ 1.1, where ω* is the center of the {ε x <0, ε z >0} region. (b) Negative index modes in the {ε x <0, ε z >0} region. (c) Magnitude of the group velocity of the fourth order negative index mode [indicated by the arrow in (b)]. Shaded region indicates ≲ 10% relative change in group velocity. The spectral width of this region is 390 GHz.

Fig. 5.
Fig. 5.

The schematics (a) and the actual electric field (b) for the refraction of a light beam at the boundary of air with an εx <0, εz >0 material. Note negative refraction of the beam and the direction of the wavefronts (εz =3, εx =-1.5).

Fig. 6.
Fig. 6.

Refocusing of a Gaussian beam with a planar lens. (a) Schematics of a beam with and without the planar lens. (b) Rapid spread of a tightly focused Gaussian beam. (c) Refocusing of a beam by a planar lens ~150 µm in thickness made from the proposed SiC/SiO2 metamaterial. Waist of the incident beam is located at x/λ=-12, and the boundaries of the lens (indicated by red lines) at x/λ=±7.5. Relative intensity is plotted in false color.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

k x 2 ε z + k y , z 2 ε x = ω 2 c 2 .
S z = k z 2 ω ε x H 2 .
E 1 = ( A x x ̂ + A z z ̂ ) e κ 1 x e i k z z
E 2 = [ ( B x sin k x x + C x cos k x x ) x ̂ + ( B z sin k x x + C z cos k x x ) z ̂ ] e i k z z
E 3 = ( D x x ̂ + D z z ̂ ) e κ 3 x e i k z z .
κ i ε d i = f j ( k x , k z ; κ j ) ,
k z 2 ε x + k x 2 ε z = ω 2 c 2
k z 2 κ i 2 ε d i = ω 2 c 2 , i { 1 , 3 } .
κ 2 ε x + k x 2 ε z = ( 1 ε d ε x ) ω 2 c 2 ,
κ = k x ε d ε z { tan k x d 2 ( odd modes ) cot k x d 2 ( even modes ) .
ε x = ε 1 ε 2 N c ε 1 + ( 1 N c ) ε 2
ε z = ( 1 N c ) ε 1 + N c ε 2 .
ε SiC = ε ω 2 ω LO 2 + i γ ω ω 2 ω TO 2 + i γ ω ,
sin χ = sin χ 0 ε z + ( 1 ε z ε x ) sin 2 χ 0 sign [ ε z ] , sin ϑ = sin χ 0 ε x 2 ε z + ( 1 ε x ε z ) sin 2 χ 0 sign [ ε x ] ,

Metrics