Abstract

This paper presents a narrow linewidth, high resolution, and high quantum efficiency imaging transmission filter based on optical trapping of resonance radiation in potassium vapor. The filter can be used to image radiation over a bandwidth narrow enough to fall within a Fraunhofer dark zone in the solar spectrum, and it can be applied to the imaging of flames, plumes or discharges containing potassium. It may also be applicable to the imaging of Raman scattering from a tunable laser. The spectral and imaging properties of the filter are demonstrated with a 1 cm aperture optically thick potassium cell illuminated by a narrow linewidth tunable laser. The spectral width at the potassium D2 line wavelength, 766.5 nm, is shown to be 1 to 2 GHz (.002 nm). At the line center, the quantum efficiency is better than 60% and the imaging resolution is better than 30 line pairs per mm. By employing a 200 micron “thin” potassium vapor cell, it is also shown that the filter maintains the high quantum efficiency (~50%) and good imaging capability (~20 lines per mm) across the 2 GHz spectral bandwidth of the cell. The “thin” cell has an out-of-band rejection of better than 1000. Its operation is demonstrated with a tunable laser as well as with broad band light from a potassium lamp and from a potassium chloride seeded flame.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pappas, T. L. Correll, N. C. Pixley, B. W. Smith, J. D. Winefordner, "Detection of Mie Scattering Using a Resonance Fluorescence Monochromator," Appl. Spectrosc. 56, 1237-1240 (2002).
    [CrossRef]
  2. J.A. Gelbwachs, "Passive Fraunhofer-wavelength atomic filter at 460.7 nm," IEEE J. Quantum Electron. 28,2577-2581, (1992).
    [CrossRef]
  3. Langberg, Naylor, and Hechtsher, "An Image-Forming, Resonance Scatter Filter," Conference on Optical Instruments and Techniques, 229-237, (1961).
  4. J.P. Temirov, N.V. Chigarev, O.I. Matveev,  et al."A resonance ionization imaging detector based on cesium atomic vapor," Spectrochemica Acta, Part B,  59(5), 677-687, (2004).
    [CrossRef]
  5. R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
    [CrossRef]
  6. T. Tang, "Infra-red rubidium atomic resonant filters for low wavenumber scattering," Phd Thesis, Department of Mechanical and Aerospace Engineering, Pricneton University, (2001).
  7. L. Qian, S.H. Zaidi and R.B. Miles, "Narrow Linewidth Potassium Imaging Filter for Near Infrared Detection of Missile Plumes," 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005-0825, (2005)
  8. N. D. Finkelstein, W.R. Lempert, and R.B. Miles, "Narrow-linewidth passband filter for ultraviolet rotational Raman imaging," Opt. Lett. 22, 537, (1997).
    [CrossRef] [PubMed]
  9. N. Bendali, H.T. Duong,  et al., "Optical resonance detection by field-ionization of Rydberg state in collinear laser spectroscopy," J. of Phys. B: Atomic, Molecular and Optics Physics 11, 4231-4240, (1981)
    [CrossRef]
  10. D.S. Hughes, P.E. Lloyd, "Pressure effects of homogeneous K vapor in absorption," Phys. Rev.,  52, 1215-1220, (1937)
    [CrossRef]
  11. E.E. Whiting, "An Empirical Approximation of the Voigt Profile," J. Quant. Spectrosc. Radiat. Transfer,  8, 1379-1384, (1968).
    [CrossRef]
  12. D.C. Morton, "Atomic Data for Resonance Absorption Lines III," Astrophysical Journal Supplement Series,  149, 205, (2003).
    [CrossRef]
  13. CRC Handbook of Chemistry and Physics, 4-129, (1999).</bok>
  14. F. Grum, G. W. Luckey, "Optical sphere paint and a working standard of reflectance," App. Opt. 7, 11, 2289, (1968).
    [CrossRef]

2004

J.P. Temirov, N.V. Chigarev, O.I. Matveev,  et al."A resonance ionization imaging detector based on cesium atomic vapor," Spectrochemica Acta, Part B,  59(5), 677-687, (2004).
[CrossRef]

2003

D.C. Morton, "Atomic Data for Resonance Absorption Lines III," Astrophysical Journal Supplement Series,  149, 205, (2003).
[CrossRef]

2002

2001

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

1997

1992

J.A. Gelbwachs, "Passive Fraunhofer-wavelength atomic filter at 460.7 nm," IEEE J. Quantum Electron. 28,2577-2581, (1992).
[CrossRef]

1981

N. Bendali, H.T. Duong,  et al., "Optical resonance detection by field-ionization of Rydberg state in collinear laser spectroscopy," J. of Phys. B: Atomic, Molecular and Optics Physics 11, 4231-4240, (1981)
[CrossRef]

1968

F. Grum, G. W. Luckey, "Optical sphere paint and a working standard of reflectance," App. Opt. 7, 11, 2289, (1968).
[CrossRef]

E.E. Whiting, "An Empirical Approximation of the Voigt Profile," J. Quant. Spectrosc. Radiat. Transfer,  8, 1379-1384, (1968).
[CrossRef]

1937

D.S. Hughes, P.E. Lloyd, "Pressure effects of homogeneous K vapor in absorption," Phys. Rev.,  52, 1215-1220, (1937)
[CrossRef]

Bendali, N.

N. Bendali, H.T. Duong,  et al., "Optical resonance detection by field-ionization of Rydberg state in collinear laser spectroscopy," J. of Phys. B: Atomic, Molecular and Optics Physics 11, 4231-4240, (1981)
[CrossRef]

Chigarev, N.V.

J.P. Temirov, N.V. Chigarev, O.I. Matveev,  et al."A resonance ionization imaging detector based on cesium atomic vapor," Spectrochemica Acta, Part B,  59(5), 677-687, (2004).
[CrossRef]

Correll, T. L.

Duong, H.T.

N. Bendali, H.T. Duong,  et al., "Optical resonance detection by field-ionization of Rydberg state in collinear laser spectroscopy," J. of Phys. B: Atomic, Molecular and Optics Physics 11, 4231-4240, (1981)
[CrossRef]

Finkelstein, N. D.

Forkey, J.

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

Gelbwachs, J.A.

J.A. Gelbwachs, "Passive Fraunhofer-wavelength atomic filter at 460.7 nm," IEEE J. Quantum Electron. 28,2577-2581, (1992).
[CrossRef]

Grum, F.

F. Grum, G. W. Luckey, "Optical sphere paint and a working standard of reflectance," App. Opt. 7, 11, 2289, (1968).
[CrossRef]

Hughes, D.S.

D.S. Hughes, P.E. Lloyd, "Pressure effects of homogeneous K vapor in absorption," Phys. Rev.,  52, 1215-1220, (1937)
[CrossRef]

Lempert, W.R.

Lloyd, P.E.

D.S. Hughes, P.E. Lloyd, "Pressure effects of homogeneous K vapor in absorption," Phys. Rev.,  52, 1215-1220, (1937)
[CrossRef]

Luckey, G. W.

F. Grum, G. W. Luckey, "Optical sphere paint and a working standard of reflectance," App. Opt. 7, 11, 2289, (1968).
[CrossRef]

Matveev, O.I.

J.P. Temirov, N.V. Chigarev, O.I. Matveev,  et al."A resonance ionization imaging detector based on cesium atomic vapor," Spectrochemica Acta, Part B,  59(5), 677-687, (2004).
[CrossRef]

Miles, R.B.

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

N. D. Finkelstein, W.R. Lempert, and R.B. Miles, "Narrow-linewidth passband filter for ultraviolet rotational Raman imaging," Opt. Lett. 22, 537, (1997).
[CrossRef] [PubMed]

Morton, D.C.

D.C. Morton, "Atomic Data for Resonance Absorption Lines III," Astrophysical Journal Supplement Series,  149, 205, (2003).
[CrossRef]

Pappas, D.

Pixley, N. C.

Smith, B. W.

Tang, Z.

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

Temirov, J.P.

J.P. Temirov, N.V. Chigarev, O.I. Matveev,  et al."A resonance ionization imaging detector based on cesium atomic vapor," Spectrochemica Acta, Part B,  59(5), 677-687, (2004).
[CrossRef]

Whiting, E.E.

E.E. Whiting, "An Empirical Approximation of the Voigt Profile," J. Quant. Spectrosc. Radiat. Transfer,  8, 1379-1384, (1968).
[CrossRef]

Winefordner, J. D.

Yalin, A.

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

Zaidi, S.H.

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

App. Opt.

F. Grum, G. W. Luckey, "Optical sphere paint and a working standard of reflectance," App. Opt. 7, 11, 2289, (1968).
[CrossRef]

Appl. Spectrosc.

Astrophysical Journal Supplement Series

D.C. Morton, "Atomic Data for Resonance Absorption Lines III," Astrophysical Journal Supplement Series,  149, 205, (2003).
[CrossRef]

IEEE J. Quantum Electron.

J.A. Gelbwachs, "Passive Fraunhofer-wavelength atomic filter at 460.7 nm," IEEE J. Quantum Electron. 28,2577-2581, (1992).
[CrossRef]

J. Meas. Sci. Technol.

R.B. Miles, A. Yalin, Z. Tang, S.H. Zaidi, J. Forkey, "Flow field imaging through sharp-edged atomic and molecular 'notch' filters," J. Meas. Sci. Technol.,  12, 442-451, (2001).
[CrossRef]

J. of Phys. B: Atomic, Molecular and Optics Physics

N. Bendali, H.T. Duong,  et al., "Optical resonance detection by field-ionization of Rydberg state in collinear laser spectroscopy," J. of Phys. B: Atomic, Molecular and Optics Physics 11, 4231-4240, (1981)
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

E.E. Whiting, "An Empirical Approximation of the Voigt Profile," J. Quant. Spectrosc. Radiat. Transfer,  8, 1379-1384, (1968).
[CrossRef]

Opt. Lett.

Part B

J.P. Temirov, N.V. Chigarev, O.I. Matveev,  et al."A resonance ionization imaging detector based on cesium atomic vapor," Spectrochemica Acta, Part B,  59(5), 677-687, (2004).
[CrossRef]

Phys. Rev.

D.S. Hughes, P.E. Lloyd, "Pressure effects of homogeneous K vapor in absorption," Phys. Rev.,  52, 1215-1220, (1937)
[CrossRef]

Other

T. Tang, "Infra-red rubidium atomic resonant filters for low wavenumber scattering," Phd Thesis, Department of Mechanical and Aerospace Engineering, Pricneton University, (2001).

L. Qian, S.H. Zaidi and R.B. Miles, "Narrow Linewidth Potassium Imaging Filter for Near Infrared Detection of Missile Plumes," 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005-0825, (2005)

Langberg, Naylor, and Hechtsher, "An Image-Forming, Resonance Scatter Filter," Conference on Optical Instruments and Techniques, 229-237, (1961).

CRC Handbook of Chemistry and Physics, 4-129, (1999).</bok>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

The concept of the refluorescence passband filter

Fig. 2.
Fig. 2.

The Hyperfine Structure and isotopic shifts of the potassium D2 Lines.

Fig. 3.
Fig. 3.

Modeling results and measurements of 5 cm Potassium Cell absorption at 30°C and 100°C tip temperatures

Fig. 4.
Fig. 4.

Quantum efficiency measurement results.

Fig. 5.
Fig. 5.

The experimental setup for MTF measurement of the potassium imaging cell.

Fig. 6.
Fig. 6.

The refluorescent image from the potassium vapor cell with a cold tip temperature of 100 °C from a 100 line per inch (lpi)(a) and a 200 lpi Ronchi Ruling (b). (a) image line spacing: 220 µm, (b) image line spacing 110 µm.

Fig. 7.
Fig. 7.

Spatial intensity distribution (cont.) (a) From the refluorescent image in Fig. 6. (b) From a bar pattern with the same spatial frequency.

Fig. 8.
Fig. 8.

MTF Measurement result for 100 °C cold tip temperature potassium cell

Fig. 9.
Fig. 9.

The design of 200 µm thin K cell.

Fig. 10.
Fig. 10.

The fluorescent images with off resonant (766.699 nm) laser illumination (a) Image from thick cell, (b) Image from thin cell.

Fig. 11.
Fig. 11.

The averaged intensity of the fluorescent image form potassium filter and the image from the Lambertian surface with respect to the blocking-cell tip temperature.

Fig. 12.
Fig. 12.

K flame absorption spectrum.

Fig. 13.
Fig. 13.

Images of the K flame. (a) Narrow linewidth image on the surface of a 135°C thin K vapor cell, (b) Reference image on a cold vapor cell, (c) Image on a Lambertian surface

Fig. 14.
Fig. 14.

Digitized intensity plot of the refluorescent image of the K seeded flame.

Fig. 15.
Fig. 15.

Fluorescent image of the Princeton Shield on the surface of potassium imaging filter.

Tables (1)

Tables Icon

Table 1. The K vapor pressure vs. Tip temperature of the Cell

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I out = I in e α ( ν ) L
α ( ν ) = e 2 4 ε 0 m e c i N i f i V ( ν , ν i )
f ij = g j g i 8 π 2 m e ε 0 c λ 2 A ji 2 π e 2
Δ E hfs = hCA 2 + h B 3 2 C ( C + 1 ) 2 I ( I + 1 ) J ( J + 1 ) 2 I ( 2 I 1 ) 2 J ( 2 J 1 )
G ( ν ) = 1 π Δ ν g exp [ ( ν ν 0 Δ ν g ) 2 ]
Δ ν g = ν 0 c 2 k B T m K
L ( ν ) = 1 π Δ ν L 2 ( ν ν 0 ) 2 + ( Δ ν L 2 ) 2
V ( ν ) = G ( ν ) L ( ν ν ) d ν
λ air = λ 0 1 + 2.735182 × 10 4 + 131.4182 λ 0 2 + 2.76249 × 10 8 λ 0 4
P torr = 10 7.283 4453 T
M = T max T min T max + T min
MTF ( f ) = M i ( f ) M o ( f )

Metrics