Abstract

We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sluder and D. E. Wolf, eds., Digital Microscopy: a Second Edition of Video Microscopy (Elsevier Academic Press, Amsterdam, 2003).
  2. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005).
    [CrossRef]
  3. S. A. Alexandrov, T. R. Hillman, T. Gutzler, M. B. Same, and D. D. Sampson, "Particle sizing with spatiallyresolved Fourier-holographic light scattering angular spectroscopy," in BiOS 2006:Multimodal Biomedical Imaging, F. S. Azar, D. N. Metaxas, eds., Proc. SPIE 6081, 608104 (2006).
    [CrossRef]
  4. L. Yaroslavsky, Principles of Digital Holography (Kluwer Academic Publishers, Boston, 2003).
  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24,291-293 (1999).
    [CrossRef]
  6. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38,6994-7001 (1999).
    [CrossRef]
  7. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29,2503-2505 (2004).
    [CrossRef] [PubMed]
  8. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualisation of living cells with subwavelength axial accuracy," Opt. Lett. 30,468-470 (2005).
    [CrossRef] [PubMed]
  9. M. Gustafsson and M. Sebesta, "Refractometry of microscopic objects with digital holography," Appl. Opt. 43,4796-4801 (2004).
    [CrossRef] [PubMed]
  10. M. Sebesta and M Gustafsson, "Object characterization with refractometric digital Fourier holography," Opt. Lett. 30,471-473 (2005).
    [CrossRef] [PubMed]
  11. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13,4492-4506 (2005).
    [CrossRef] [PubMed]
  12. V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Express 14,5168-5177 (2006).
    [CrossRef] [PubMed]
  13. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
    [CrossRef] [PubMed]
  14. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
    [CrossRef] [PubMed]
  15. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
    [CrossRef] [PubMed]
  16. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
    [CrossRef] [PubMed]
  17. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: Is it sensitive to cellular and nuclear morphology," Opt. Express 5,302-317 (1999).
    [CrossRef] [PubMed]
  18. H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
    [CrossRef]
  19. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
    [CrossRef]
  20. W. P. Van DeMerwe, J. Czege,M. E. Milham, and B. V. Bronk, "Rapid optically based measurements of diameter and length for spherical or rod-shaped bacteria in vivo," Appl. Opt. 43,5295-5302 (2004).
    [CrossRef] [PubMed]
  21. N. N. Boustany, S. C. Kuo, and N. V. Thakor, "Optical scatter imaging: subcellular morphometry in situ with Fourier filtering," Opt. Lett. 26,1063-1065 (2001).
    [CrossRef]
  22. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
    [CrossRef] [PubMed]
  23. J. D. Wilson and T. H. Foster, "Mie theory interpretations of light scattering from intact cells," Opt. Lett. 30, 2442-2444 (2005).
    [CrossRef] [PubMed]
  24. Y. L. Kim, Y. Liu, R. K.Wali, H. K. Roy,M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
    [CrossRef]
  25. Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
    [CrossRef] [PubMed]
  26. M. Bartlett, G. Huang, L. Larcom, and H. Jiang, "Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy," Appl. Opt. 43,1296-1307 (2004).
    [CrossRef] [PubMed]
  27. Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13,601-611 (2005).
    [CrossRef] [PubMed]
  28. A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26,322-324 (2001).
    [CrossRef]
  29. R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13,4693-4698 (2005).
    [CrossRef]
  30. J. Goodman, Introduction to Fourier optics (McGraw-Hill, New York, 1996, 2nd ed.).
  31. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
    [CrossRef] [PubMed]
  32. J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
    [CrossRef]
  33. M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, "Microscope-based static light-scattering instrument," Opt. Lett. 26,890-892 (2001).
    [CrossRef]

2006

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Express 14,5168-5177 (2006).
[CrossRef] [PubMed]

2005

Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13,601-611 (2005).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualisation of living cells with subwavelength axial accuracy," Opt. Lett. 30,468-470 (2005).
[CrossRef] [PubMed]

M. Sebesta and M Gustafsson, "Object characterization with refractometric digital Fourier holography," Opt. Lett. 30,471-473 (2005).
[CrossRef] [PubMed]

Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13,4492-4506 (2005).
[CrossRef] [PubMed]

R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13,4693-4698 (2005).
[CrossRef]

J. D. Wilson and T. H. Foster, "Mie theory interpretations of light scattering from intact cells," Opt. Lett. 30, 2442-2444 (2005).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005).
[CrossRef]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
[CrossRef] [PubMed]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
[CrossRef] [PubMed]

2004

2003

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
[CrossRef]

2002

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

2001

2000

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

1999

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005).
[CrossRef]

Alfano, R. R.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Alimova, A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Andersson-Engels, S.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
[CrossRef] [PubMed]

Arendt, J. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

Backman, V.

Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13,601-611 (2005).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

Badizadegan, K.

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29,2503-2505 (2004).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

Bargo, P. R.

J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
[CrossRef]

Bartlett, M.

Bevilacqua, F.

Bigelow, C. E.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
[CrossRef] [PubMed]

Bigio, I. J.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Boustany, N. N.

Bronk, B. V.

Calkins, D. J.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
[CrossRef] [PubMed]

Carapezza, E.

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Cipolloni, P. B.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Colomb, T.

Cuche, E.

Czege, J.

Dasari, R. R.

Deflores, L. P.

Depeursinge, C.

Drezek, R.

Emery, Y.

Fang, H.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Feld, M. S.

Foster, T. H.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
[CrossRef] [PubMed]

J. D. Wilson and T. H. Foster, "Mie theory interpretations of light scattering from intact cells," Opt. Lett. 30, 2442-2444 (2005).
[CrossRef] [PubMed]

Freedman, S. D.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Freyer, J. P.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Garcia, J.

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

Gossage, K.

Graf, R. N.

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

Gustafsson, M

Gustafsson, M.

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
[CrossRef] [PubMed]

Hanlon, E. B.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

He, J.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
[CrossRef] [PubMed]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005).
[CrossRef]

Huang, G.

Itzkan, I.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

Iwai, H.

Jacques, S. L.

J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
[CrossRef]

Javidi, B.

Jiang, H.

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Kaplan, P. D.

Karlsson, A.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
[CrossRef] [PubMed]

Katz, A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Kim, Y. L.

Kimerer, L. M.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Kuo, S. C.

Larcom, L.

Li, X.

Liu, Y.

Magistretti, P.

Marquet, P.

McCormick, S. A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Mico, V.

Milham, M. E.

Moon, I.

Mourant, J. R.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Ollero, M.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Perelman, L. T.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

Popescu, G.

Popp, A. K.

Prahl, S. A.

J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
[CrossRef]

Ramella-Roman, J. C.

J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
[CrossRef]

Rappaz, B.

Richards-Kortum, R.

Rosen, R. B.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Rudolph, E.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005).
[CrossRef]

Savage, H. E.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Sebesta, M.

Shah, M. K.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Sokolov, K.

Swartling, J.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
[CrossRef] [PubMed]

Thakor, N. V.

Valentine, M. T.

Van DeMerwe, W. P.

Vaughan, J. C.

Vitkin, E.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Wallace, M. B.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

Wax, A.

Weitz, D. A.

Wilson, J. D.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
[CrossRef] [PubMed]

J. D. Wilson and T. H. Foster, "Mie theory interpretations of light scattering from intact cells," Opt. Lett. 30, 2442-2444 (2005).
[CrossRef] [PubMed]

Xu, M.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

Yang, C.

Yeom, S.

Zalevsky, Z.

Zaman, M. M.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

Appl. Opt.

Biophys. J.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003).
[CrossRef]

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003).
[CrossRef]

J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002).
[CrossRef] [PubMed]

Nature (London)

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000).
[CrossRef] [PubMed]

Nature Med.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

J. D. Wilson and T. H. Foster, "Mie theory interpretations of light scattering from intact cells," Opt. Lett. 30, 2442-2444 (2005).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005).
[CrossRef]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualisation of living cells with subwavelength axial accuracy," Opt. Lett. 30,468-470 (2005).
[CrossRef] [PubMed]

M. Sebesta and M Gustafsson, "Object characterization with refractometric digital Fourier holography," Opt. Lett. 30,471-473 (2005).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24,291-293 (1999).
[CrossRef]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29,2503-2505 (2004).
[CrossRef] [PubMed]

A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26,322-324 (2001).
[CrossRef]

M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, "Microscope-based static light-scattering instrument," Opt. Lett. 26,890-892 (2001).
[CrossRef]

N. N. Boustany, S. C. Kuo, and N. V. Thakor, "Optical scatter imaging: subcellular morphometry in situ with Fourier filtering," Opt. Lett. 26,1063-1065 (2001).
[CrossRef]

Phys. Rev. Lett.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006).
[CrossRef] [PubMed]

Other

Y. L. Kim, Y. Liu, R. K.Wali, H. K. Roy,M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

J. Goodman, Introduction to Fourier optics (McGraw-Hill, New York, 1996, 2nd ed.).

S. A. Alexandrov, T. R. Hillman, T. Gutzler, M. B. Same, and D. D. Sampson, "Particle sizing with spatiallyresolved Fourier-holographic light scattering angular spectroscopy," in BiOS 2006:Multimodal Biomedical Imaging, F. S. Azar, D. N. Metaxas, eds., Proc. SPIE 6081, 608104 (2006).
[CrossRef]

L. Yaroslavsky, Principles of Digital Holography (Kluwer Academic Publishers, Boston, 2003).

G. Sluder and D. E. Wolf, eds., Digital Microscopy: a Second Edition of Video Microscopy (Elsevier Academic Press, Amsterdam, 2003).

Supplementary Material (1)

» Media 1: MOV (932 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic showing orientation of the object and recording planes, and their coordinate systems. The wavevectors k R and k S , and the fringe vector k F , correspond to the special case of an axial sample wave.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup. Items L1, L2, L3 are lenses, M1, M2, M3 are mirrors, B1, B2 are beamsplitters, RFS is a rectangular field stop, S is the light source, T is a telescopic system, and CCD is the CCD matrix sensor. The inset contains a magnified depiction of the sample, showing the direction of the illumination and scattered waves within the sample plane.

Fig. 3.
Fig. 3.

(a) Curves of constant scattering angles in the recording plane. The distance diff is shown for the case θs ,diff=1°; (b) Regions in the sample plane for which the recorded spectrum is not limited by vignetting, for different objective lens diameters DL (displayed in millimeters on each curve). In increasing order, their numerical apertures are 0.175, 0.2, 0.225 and 0.25. The case corresponding to our objective lens (DL ≅6mm) is highlighted.

Fig. 4.
Fig. 4.

Blue curves show scattered power vs. angle predicted by Mie theory; the high-pass filtered red curves emphasize their sinusoidal character. Each graph has an arbitrary (and different) scale on the ordinate axis.

Fig. 5.
Fig. 5.

Movie showing the variation in the reconstructed scattered power (right) as the recording plane strip-mask position (and corresponding selected scattering angle, left) is varied over a scattering angle range from 140° to 151°. (A low-pass spatial filter is applied to the reconstructed power map before it is displayed.) A linear gray or color scale is used for both parts of the figure. For the reconstructed power map, a false color scale is used; its color bar is depicted at the right of the figure. [Media 1]

Fig. 6.
Fig. 6.

Reconstruction of a sample of 5.4-µm spheres in water (logarithmic scale, top row, left), and a false-color plot (right) showing the detected sphere size in each region (the scale bar indicates sphere diameter in micrometers). The second row displays two-dimensional angular scattering power spectra (linear scale) corresponding to the five selected regions in the sample. The third row shows the two-dimensional inverse Fourier transform of each region (linear scale), with a dotted yellow line indicating the direction of scattering angle variation. The detected peak position is indicated with a magenta cross, and the theoretical peak positions corresponding to 5.4 and 11.4-µm spheres shown in yellow. The detected sphere sizes for the five regions were, respectively, 4.3, 4.3, 4.8, 4.6, and 4.3 µm.

Fig. 7.
Fig. 7.

Reconstruction and sphere size detection of a sample of 11.4-µm spheres in water. The structure of the figure is similar to that of Fig. 6. The detected sphere sizes for the five regions were, respectively, 10.2, 10.2, 10.5, 10.5, and 9.4 µm.

Fig. 8.
Fig. 8.

Reconstruction and associated images of a sample comprising spheres of two different sizes (5.4 and 11.4µm) in water. The structure of the figure is similar to that of the previous two, except that six regions have been highlighted. Regions 1-3 correspond to the larger spheres, and regions 4-6 to the smaller spheres. The detected sphere sizes were 10.3, 10.0, 10.2, 4.8, 4.9, and 5.4 µm, respectively.

Fig. 9.
Fig. 9.

Reconstruction and associated images of a sample of red blood cells. The structure of the figure is similar to that of the previous ones. The false-color size distribution was generated assuming that the particles could be approximated as spheres; the scale on the plots on the bottom row is not sphere diameter but fringe spatial frequency in inverse millimetres. The detected fringe frequencies were 0.37, 0.39, 0.34, 0.38, and 0.35 mm-1, which would correspond to sphere diameters of 6.1, 6.3, 5.6, 6.2, and 5.7 µm, respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = U 0 S 2 + U 0 R 2 + U S U 0 R e j φ R + U S * U 0 R e j φ R .
𝓕 1 [ I ( x , y ) ] = Γ u ( v x , v y ) + U 0 R 2 δ ( v x , v y ) + U 0 R u S ( v x + sin θ r cos ϕ r λ , v y + sin θ r cos ϕ r λ )
+ U 0 R u S * ( v x + sin θ r cos ϕ r λ , v y + sin θ r sin ϕ r λ ) ,
h ( ν x , ν y ) = 𝓕 1 { H ( x , y ) } = H ( x , y ) exp { + j 2 π ( ν x x + ν y y ) } d x d y ,
V O ( ξ , η ) = j M u S ( ξ M , η M ) ,
V O ( ξ , η ) = V S ( ξ , η ) k g ( ξ , η ) ,
k g ( ξ , η ) = exp ( j k g ) j λ g exp [ j k 2 g ( ξ 2 + η 2 ) ] .
U S ( x , y ) = U S , dc ( x , y ) K g ( x M , y M ) ,
K g ( ν ξ , ν η ) = exp ( j k g ) exp [ j g π λ ( ν ξ 2 + ν η 2 ) ] .
K g * I = U 0 S 2 K g * + U 0 R 2 K g * + U S , dc U 0 R e j φ R + U S , dc * ( K g 2 ) * U 0 R e j φ R ,
H f = 2 π k F cos ( θ r 2 ) = λ sin θ r .
Δ d Δ θ = 4 ln 2 π λ .
θ s = π [ arcsin ( sin θ i n med ) + arcsin ( sin θ d n med ) ] .
sin θ r 3 d s λ 2 M .
sin θ r < λ 2 Δ r .

Metrics