Abstract

An efficient wavelength-conversion-free all-optical 2R regenerator is proposed. The regeneration is based on power-dependent spectrum broadening in normal-dispersion fiber and subsequent off-centered filtering. Twofold regeneration is performed in a bidirectional configuration where the signal is transmitted twice along the fiber in opposite directions. Experiment at 10Gb/s shows no penalty arising from the bidirectional highpower signal transmission in the fiber and demonstrates strong improvement of extinction ratio of the input signal by the regenerator.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, "Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier," Opt. Express 14, 2085-2094 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2085.
    [CrossRef] [PubMed]
  2. I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jaques, and C. R. Giles, "Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer," 31st European Conference on Optical Communications (ECOC2005), Th 4.3.3 (2005).
    [CrossRef]
  3. P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
    [CrossRef]
  4. V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
    [CrossRef]
  5. M. Matsumoto, "Simultaneous reshaping of OOK and DPSK signals by a fiber-based all-optical regenerator," Opt. Express 14, 1430-1438 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1430.
    [CrossRef] [PubMed]
  6. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
    [CrossRef]
  7. M. Matsumoto and O. Leclerc, "Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber," Electron. Lett. 38, 576-577 (2002).
    [CrossRef]
  8. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," 1998 European Conference on Optical Communications, 475 (1998).
  9. G. Raybon, Y. Su, J. Leuthold, R. -J. Essiambre, T. Her, C. Joergensen, P. Steinvurzed, K. Dreyer, and K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," 2002 Optical Fiber Communication Conference, FD10 (2002).
    [CrossRef]
  10. S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Feber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, "160 Gbit/s optical 3R-regenerator in a fiber transmission experiment," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD16. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD16
  11. S. Radic and S. Chandrasekhar, "Limitation in dense bidirectional transmission in absence of optical amplification," IEEE Photon. Technol. Lett. 14, 95-97 (2002).
    [CrossRef]
  12. S. J. Savage, B. S. Robinson, S. A. Hamilton, and E. P. Ippen, "All-optical pulse regeneration in an ultrafast nonlinear interferometer with Faraday mirror polarization stabilization," Opt. Lett. 28, 13-15 (2003).
    [CrossRef] [PubMed]
  13. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7872.
    [CrossRef] [PubMed]

2006 (3)

2005 (3)

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
[CrossRef]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7872.
[CrossRef] [PubMed]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

2003 (1)

2002 (2)

M. Matsumoto and O. Leclerc, "Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber," Electron. Lett. 38, 576-577 (2002).
[CrossRef]

S. Radic and S. Chandrasekhar, "Limitation in dense bidirectional transmission in absence of optical amplification," IEEE Photon. Technol. Lett. 14, 95-97 (2002).
[CrossRef]

Bornholdt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Böttger, G.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Chandrasekhar, S.

S. Radic and S. Chandrasekhar, "Limitation in dense bidirectional transmission in absence of optical amplification," IEEE Photon. Technol. Lett. 14, 95-97 (2002).
[CrossRef]

Croussore, K.

Cvecek, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Devgan, P.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
[CrossRef]

Freude, W.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Gaeta, A. L.

Grigoryan, V. S.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
[CrossRef]

Hamilton, S. A.

Han, Y.

Ippen, E. P.

Kim, C.

Kim, I.

Kumar, P.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
[CrossRef]

Leclerc, O.

M. Matsumoto and O. Leclerc, "Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber," Electron. Lett. 38, 576-577 (2002).
[CrossRef]

Leuchs, G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Leuthold, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Li, G.

Marculescu, A.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Matsumoto, M.

M. Matsumoto, "Simultaneous reshaping of OOK and DPSK signals by a fiber-based all-optical regenerator," Opt. Express 14, 1430-1438 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1430.
[CrossRef] [PubMed]

M. Matsumoto and O. Leclerc, "Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber," Electron. Lett. 38, 576-577 (2002).
[CrossRef]

Meissner, M.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Okawachi, Y.

Radic, S.

S. Radic and S. Chandrasekhar, "Limitation in dense bidirectional transmission in absence of optical amplification," IEEE Photon. Technol. Lett. 14, 95-97 (2002).
[CrossRef]

Robinson, B. S.

Sartorius, B.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Savage, S. J.

Schlak, M.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Schmauss, B.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Schmidt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Sharping, J. E.

Shin, M.

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
[CrossRef]

Slovak, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Sponsel, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Striegler, A. G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Tsadka, S.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

van Howe, J.

Vorreau, P.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Wang, J.

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

Wang, Y.

Willner, A. E.

Xu, C.

Electron. Lett. (2)

V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, pp. 1021-1022 (2005).
[CrossRef]

M. Matsumoto and O. Leclerc, "Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber," Electron. Lett. 38, 576-577 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

S. Radic and S. Chandrasekhar, "Limitation in dense bidirectional transmission in absence of optical amplification," IEEE Photon. Technol. Lett. 14, 95-97 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (4)

I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jaques, and C. R. Giles, "Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer," 31st European Conference on Optical Communications (ECOC2005), Th 4.3.3 (2005).
[CrossRef]

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," 1998 European Conference on Optical Communications, 475 (1998).

G. Raybon, Y. Su, J. Leuthold, R. -J. Essiambre, T. Her, C. Joergensen, P. Steinvurzed, K. Dreyer, and K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," 2002 Optical Fiber Communication Conference, FD10 (2002).
[CrossRef]

S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Feber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, "160 Gbit/s optical 3R-regenerator in a fiber transmission experiment," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD16. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-PD16

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the wavelength-conversion-free 2R regenerator in bidirectional fiber configuration. (b) A regenerator used in the experiment where the circulator at the input end of the fiber is replaced by a 80:20 directional coupler.

Fig. 2.
Fig. 2.

Signal power transfer functions of the 2R regenerator in the forward direction. Pulse repetition rate is 10GHz.

Fig. 3.
Fig. 3.

Signal spectra at the exit of HNLF in the forward path (solid curve marked with filled circles), at the exit of the first spectrum slicing OBPF (dashed curve marked with filled circles), at the exit of HNLF in the backward path (solid curve marked with open circles), and at the exit of the second spectrum slicing OBPF (dashed curve marked with open circles). Resolution bandwidth is 0.1nm.

Fig. 4.
Fig. 4.

Extinction ratios of input signal (dash-dotted curve), output signal after first-stage regeneration (solid curve with crosses), and output signal after second-stage regeneration (solid curve with dots). Data points on the upper horizontal axis indicate ERs larger than 32dB.

Fig. 5.
Fig. 5.

Eye patterns of (a) input signal, (b) output signal after first-stage regeneration, and (c) output signal after second-stage regeneration. ER of the input signal is 2.5dB. 5ps/div for horizontal axis. Bandwidth of sampling oscilloscope is 50GHz.

Metrics