Abstract

It is proposed for the first time how an electrically poled chirped Bragg grating in an optical fiber may be used for creating efficient, electrically controllable optical fiber delay lines. The tunable range for the delay can be chosen by fixing the chirp rate of the Bragg grating. Additionally, strain and temperature may be used to change the centre wavelength of the delay line. Dispersion may also be used to increase phase-modulation in nonlinear optical fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Lizé, B. Burgoyne, X. Daxhelet, A. E. Willner, R. Kashyap, "Linear Effective Index Contribution to the Enhancement of Nonlinear Coefficient in Silica Nanowires," OSA Annual Meeting 2006.
  2. T. A. Birks, W. J. Wadsworth and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  3. S. Coen, A. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St.J. Russell, "Whitelight supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  4. J. Gopinath, H. Shen, H. Sotobayashi, E. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, "Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 µm," Opt. Express 12, 5697-5702 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-23-5697.
    [CrossRef] [PubMed]
  5. R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
    [CrossRef]
  6. P. Gunning, R. Kashyap, A. S. Siddiqui, and K. Smith K, �Picosecond pulse generation of <5ps from gainswitched DFB semiconductor laser diode using linearly step-chirped fibre grating,� Electron. Lett. 31, 1066-1067 (1995).
    [CrossRef]
  7. R. J. Campbell and R. Kashyap, "Spectral Profile and multiplexing of Bragg gratings in photosensitive fibre," Opt. Lett. 16, 898-900 (1991).
    [CrossRef] [PubMed]
  8. R. A. Myers, N. Mukherjee, S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991). http://www.opticsinfobase.org/abstract.cfm?URI=ol-16-22-1732
    [CrossRef] [PubMed]
  9. W. Margulis, N. Myren, "Progress on Fibre Poling and Devices," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThQ1., http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OThQ1.
  10. R. Kashyap, Fiber Bragg Gratings, Ed. G. P. Agrawal, (Academic Press, 1999), pp. 326.
  11. O. Tarasenko, N. Myren, W. Margulis and I. C. S. Carvalho, "All-Fiber Electro-Optical Polarization Control," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OWE3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OWE3.
  12. "Fundamentals of fibre optics in telecommunications and sensor systems", Ed. Bishnu P. Pal, Wiley Eastern, Chapter 21, K. Thyagarajan and Ajoy Ghatak, 1992.
  13. R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
    [CrossRef]
  14. R. Kashyap and M. de Lacerda Rocha,"On the group delay characteristics of chirped fibre Bragg gratings", Opt. Commun. 153, 19-22 (1998).
    [CrossRef]
  15. A. Boskovic, J. R. Taylor, and R. Kashyap, "Forty times dispersive broadening of femtosecond pulses and complete recompression in a chirped fibre grating," Opt. Commun. 119, 51-55 (1995).
    [CrossRef]
  16. E. Choi, J. Na, S. Ryu, G. Mudhana, and B. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1334.
    [CrossRef] [PubMed]
  17. K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
    [CrossRef]

2005 (1)

2004 (1)

2001 (1)

2000 (1)

1998 (1)

R. Kashyap and M. de Lacerda Rocha,"On the group delay characteristics of chirped fibre Bragg gratings", Opt. Commun. 153, 19-22 (1998).
[CrossRef]

1995 (1)

A. Boskovic, J. R. Taylor, and R. Kashyap, "Forty times dispersive broadening of femtosecond pulses and complete recompression in a chirped fibre grating," Opt. Commun. 119, 51-55 (1995).
[CrossRef]

1994 (2)

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
[CrossRef]

1991 (2)

1983 (1)

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
[CrossRef]

Birks, T. A.

Boskovic, A.

A. Boskovic, J. R. Taylor, and R. Kashyap, "Forty times dispersive broadening of femtosecond pulses and complete recompression in a chirped fibre grating," Opt. Commun. 119, 51-55 (1995).
[CrossRef]

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Brueck, S. R. J.

Campbell, R. J.

Cassidy, S. A.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
[CrossRef]

Chau, A.

Cherniikov, S. V.

R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
[CrossRef]

Choi, E.

Coen, S.

de Lacerda Rocha, M.

R. Kashyap and M. de Lacerda Rocha,"On the group delay characteristics of chirped fibre Bragg gratings", Opt. Commun. 153, 19-22 (1998).
[CrossRef]

Gopinath, J.

Guy, M. J.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Harvey, J. D.

Hasegawa, T.

Hornung, S.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
[CrossRef]

Ippen, E.

Kashyap, R

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Kashyap, R.

R. Kashyap and M. de Lacerda Rocha,"On the group delay characteristics of chirped fibre Bragg gratings", Opt. Commun. 153, 19-22 (1998).
[CrossRef]

A. Boskovic, J. R. Taylor, and R. Kashyap, "Forty times dispersive broadening of femtosecond pulses and complete recompression in a chirped fibre grating," Opt. Commun. 119, 51-55 (1995).
[CrossRef]

R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
[CrossRef]

R. J. Campbell and R. Kashyap, "Spectral Profile and multiplexing of Bragg gratings in photosensitive fibre," Opt. Lett. 16, 898-900 (1991).
[CrossRef] [PubMed]

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
[CrossRef]

Knight, J. C.

Lee, B.

Leonhardt, R.

Mckee, P. F.

R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
[CrossRef]

Mudhana, G.

Mukherjee, N.

Myers, R. A.

Na, J.

Nagashima, T.

Noske, D. U.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Reeve, M. H.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
[CrossRef]

Rottwitt, K.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Russell, P. St. J.

Russell, P. St.J.

Ryu, S.

Shen, H.

Sotobayashi, H.

Sugimoto, N.

Taylor, J. R.

A. Boskovic, J. R. Taylor, and R. Kashyap, "Forty times dispersive broadening of femtosecond pulses and complete recompression in a chirped fibre grating," Opt. Commun. 119, 51-55 (1995).
[CrossRef]

R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
[CrossRef]

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Wadsworth, W. J.

Electron. Lett. (3)

R. Kashyap, S. V. Cherniikov, P. F. Mckee, and J. R. Taylor, "30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibres using an all fibre photoinduced chirped reflection grating," Electron. Lett. 30, 1078-1079 (1994).
[CrossRef]

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, "Temperature de-sensitisation of delay in optical fibres for sensor applications," Electron. Lett. 19, 1039-1040 (1983).
[CrossRef]

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R Kashyap, "Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings," Electron. Lett. 30, 995-996 (1994).
[CrossRef]

Opt. Commun. (2)

R. Kashyap and M. de Lacerda Rocha,"On the group delay characteristics of chirped fibre Bragg gratings", Opt. Commun. 153, 19-22 (1998).
[CrossRef]

A. Boskovic, J. R. Taylor, and R. Kashyap, "Forty times dispersive broadening of femtosecond pulses and complete recompression in a chirped fibre grating," Opt. Commun. 119, 51-55 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (6)

W. Margulis, N. Myren, "Progress on Fibre Poling and Devices," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OThQ1., http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OThQ1.

R. Kashyap, Fiber Bragg Gratings, Ed. G. P. Agrawal, (Academic Press, 1999), pp. 326.

O. Tarasenko, N. Myren, W. Margulis and I. C. S. Carvalho, "All-Fiber Electro-Optical Polarization Control," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OWE3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OWE3.

"Fundamentals of fibre optics in telecommunications and sensor systems", Ed. Bishnu P. Pal, Wiley Eastern, Chapter 21, K. Thyagarajan and Ajoy Ghatak, 1992.

Y. K. Lizé, B. Burgoyne, X. Daxhelet, A. E. Willner, R. Kashyap, "Linear Effective Index Contribution to the Enhancement of Nonlinear Coefficient in Silica Nanowires," OSA Annual Meeting 2006.

P. Gunning, R. Kashyap, A. S. Siddiqui, and K. Smith K, �Picosecond pulse generation of <5ps from gainswitched DFB semiconductor laser diode using linearly step-chirped fibre grating,� Electron. Lett. 31, 1066-1067 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Delay change as a function of a change in the mode effective index in a chirped fiber Bragg grating for various chirp bandwidths. Also shown is the equivalent phase change as a function of the induced refractive index change.

Fig. 2.
Fig. 2.

A simulation of the change in the group delay and the reflectivity of a 100mm long Tanh2 apodised grating with a chirp bandwidth of 0.8nm. The pair of curves to the left is for a grating without the voltage applied; the curves to the right show the effect of the maximum change in the effective index (10-4) of the grating on the application of an electric field.

Fig. 3.
Fig. 3.

A schematic of a dispersion compensated delay line for optical pulses. The chirped gratings are used in opposition through the four port circulator. The voltages applied to the two chirped gratings also have the opposite signs to double the optical delay, while at the same time compensate for dispersion. λs and λl indicate reflections at λshort and λlong , respectively. V1 and V2 indicate the variable voltage sources.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ t = δ n eff ( V ) L c
τ ( λ B ) = 2 t δ λ B Δ λ
λ B = 2 n eff Λ local
δ λ B = 2 δ n eff ( V ) Λ local
τ ( λ B ) = 4 t δ n eff ( V ) Λ local Δ λ
τ ( λ B ) = D λ B δ neff ( V ) n eff
δ n eff ( V ) = r 33 n neff 3 V ( 2 d )
τ ( λ ) = ( D n neff 2 ) r 33 λ B V ( 2 d )
Δ ϕ = 2 π c D n eff 2 r 33 V ( 2 d )
Δ ϕ = 2 π c D δ neff ( V ) n eff

Metrics