Abstract

Several novel interferometer configurations are presented which have a high signal-to-noise ratio making them suitable for high contrast imaging. High contrast imaging instruments, such as required to directly observe extrasolar planets, will require adaptive optics systems capable of reducing the atmospherically induced phase aberrations to a few nm of wave-front error. The interferometer designs presented are shown to provide a higher contrast and/or are more robust than the conventional Mach- Zehnder interferometer, which has previously been considered for high contrast imaging. In addition, all of the interferometric-based wave-front sensors are shown to provide a significant improvement in the achievable contrast ratio when compared with conventional adaptive optics systems containing Shack-Hartmann wave-front sensors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
    [CrossRef]
  2. J. R. P. Angel, "Ground-based imaging of extra solar planets using adaptive optics," Nature 368, 203 (1994).
    [CrossRef]
  3. L. A. Poyneer and B. Macintosh, "Spatially filtered wave-front sensor for high-order adaptive optics," J. Opt. Soc. Am. A 21810 (2004).
    [CrossRef]
  4. F. Rigaut, J.-P. Véran, and O. Lai, "An analytical model for Shack-Hartmann-based adaptive optics systems," in Adaptive Optical System Technologies; Domenico Bonaccini, R. K. Tyson, ed., Proc. SPIE 3353 1038 1148(1998).
    [CrossRef]
  5. E. E. Bloemhof and J. K. Wallace, "Phase contrast wavefront sensing for adaptive optics," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, M. K. Giles, eds., Proc. SPIE 5553 159 169 (2004).
    [CrossRef]
  6. R. B. Blackman, The Measurement of Power Spectra, From the Point of View of Communications Engineering. (Dover, New York, 1959).
  7. J. Millerd, J. Hayes, M. North-Morris, M. Novak and J. Wyant, "Pixelated Phase-Mask Dynamic Interferometer," in Interferometry XII: Techniques and Analysis, K. Creath, and J. Schmit, eds., Proc. SPIE 5531 304 314 (2004).
    [CrossRef]
  8. M. P. Kothiyal and C. Delisle, "Shearing interferometer for phase shifting interferometry with polarization phase shifter," Appl. Opt. 244439 (1985).
    [CrossRef] [PubMed]
  9. K. L. Baker and E. A. Stappaerts, "A single-shot pixellated phase-shifting interferometer utilizing a liquid-crystal spatial light modulator," Opt. Lett. 31733 (2006).
    [CrossRef] [PubMed]
  10. R.-C. Tyan, P.-C. Sun, A. Scherer and Y. Fainman, "Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings," Opt. Lett. 21761 (1996).
    [CrossRef] [PubMed]

2006 (1)

2004 (2)

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

L. A. Poyneer and B. Macintosh, "Spatially filtered wave-front sensor for high-order adaptive optics," J. Opt. Soc. Am. A 21810 (2004).
[CrossRef]

1996 (1)

1994 (1)

J. R. P. Angel, "Ground-based imaging of extra solar planets using adaptive optics," Nature 368, 203 (1994).
[CrossRef]

1985 (1)

Angel, J. R. P.

J. R. P. Angel, "Ground-based imaging of extra solar planets using adaptive optics," Nature 368, 203 (1994).
[CrossRef]

Azucena, O.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Baker, K. L.

K. L. Baker and E. A. Stappaerts, "A single-shot pixellated phase-shifting interferometer utilizing a liquid-crystal spatial light modulator," Opt. Lett. 31733 (2006).
[CrossRef] [PubMed]

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Crawford, J.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Delisle, C.

Fainman, Y.

Flath, L. M.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Gavel, D.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Kartz, M. W.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Kothiyal, M. P.

Kruelevitch, P.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Macintosh, B.

Olivier, S. S.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Olsen, J.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Poyneer, L. A.

Scherer, A.

Silva, D. A.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Stappaerts, E. A.

K. L. Baker and E. A. Stappaerts, "A single-shot pixellated phase-shifting interferometer utilizing a liquid-crystal spatial light modulator," Opt. Lett. 31733 (2006).
[CrossRef] [PubMed]

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Sun, P.-C.

Tucker, J.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Tyan, R.-C.

Wilks, S. C.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Young, P. E.

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Nature (1)

J. R. P. Angel, "Ground-based imaging of extra solar planets using adaptive optics," Nature 368, 203 (1994).
[CrossRef]

Opt. Lett. (3)

K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine," Opt. Lett. 291731 (2004).
[CrossRef]

K. L. Baker and E. A. Stappaerts, "A single-shot pixellated phase-shifting interferometer utilizing a liquid-crystal spatial light modulator," Opt. Lett. 31733 (2006).
[CrossRef] [PubMed]

R.-C. Tyan, P.-C. Sun, A. Scherer and Y. Fainman, "Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings," Opt. Lett. 21761 (1996).
[CrossRef] [PubMed]

Other (4)

F. Rigaut, J.-P. Véran, and O. Lai, "An analytical model for Shack-Hartmann-based adaptive optics systems," in Adaptive Optical System Technologies; Domenico Bonaccini, R. K. Tyson, ed., Proc. SPIE 3353 1038 1148(1998).
[CrossRef]

E. E. Bloemhof and J. K. Wallace, "Phase contrast wavefront sensing for adaptive optics," in Advanced Wavefront Control: Methods, Devices, and Applications II, J. D. Gonglewski, M. T. Gruneisen, M. K. Giles, eds., Proc. SPIE 5553 159 169 (2004).
[CrossRef]

R. B. Blackman, The Measurement of Power Spectra, From the Point of View of Communications Engineering. (Dover, New York, 1959).

J. Millerd, J. Hayes, M. North-Morris, M. Novak and J. Wyant, "Pixelated Phase-Mask Dynamic Interferometer," in Interferometry XII: Techniques and Analysis, K. Creath, and J. Schmit, eds., Proc. SPIE 5531 304 314 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Mach-Zehnder self-referencing wave-front sensor configurations. Fig 1a shows the design presented in Angel with a modification of a spatial filter to reduce aliasing and Fig 1b illustrates a design which incorporates the pinhole and spatial filter into the first beamsplitter, thereby improving the signal-to-ratio by a factor of the SQRT(2).

Fig. 2.
Fig. 2.

Comparison between the spatial distribution of the probe and reference energy of the modified Mach-Zehnder interferometer when using a hard aperture, top, and an apodized beamsplitter, bottom inverse Blackman.

Fig. 3.
Fig. 3.

Pixelated self-referencing wave-front sensor configuration, Figure 3a, with an enlarged image of the polarizing spatial filter/pinhole mask, Figure 3b, used to generate the spatially filtered signal waves and the reference waves and an enlarged picture of the pixilated polarizers, Figure 3c, in front of the detectors used to create the pixilated phase shifts. This image represents half of the interferometer with the identical remaining half taking the reflected light from the initial polarizer.

Fig. 4.
Fig. 4.

A more efficient pixelated self-referencing wave-front sensor configuration that uses a LC-SLM: PBS’s, polarizing beamsplitters; OAP, off-axis parabolas. The polarizing mask in this interferometer is the same as the one in Figure 3b. This image represents half of the interferometer with the identical remaining half taking the reflected light from the initial polarizer.

Fig. 5.
Fig. 5.

Pixelated phase shifts and wave-front measurement grid.

Fig. 6.
Fig. 6.

Radially averaged PSF comparisons between the different interferometer and Shack-Hartmann configurations. Fig. 6a shows the radially averaged PSF over the entire range. Fig. 6(b) zooms in to make the differences in the interferometers more apparent.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Phase ( i , j ) = ATAN { I 3 π 2 ( i , j ) 0.25 [ I π 2 ( i , j + 1 ) + I π 2 ( i , j 1 ) + I π 2 ( i 1 , j ) + I π 2 ( i + 1 , j ) ] I 0 ( i , j ) 0.25 [ I π ( i , j + 1 ) + I π ( i , j 1 ) + I π ( i 1 , j ) + I π ( i + 1 , j ) ] } .

Metrics