Abstract

An optical surface of variable concave parabolic shape and a clear aperture of 30 mm was created using two rings to deform a flat 50.8 mm diameter mirror. The deformable mirror assembly was modeled using finite element analysis software as well as analytical solutions. Measured parabolic surface deformation showed good agreement with those models. Mirror performance was quantitatively studied using an interferometer and focal lengths from hundreds of meters down to the meter scale have been achieved. In this publication, the deformable mirror has been applied to compensate on shot thermal lensing in 16 mm diameter and 25 mm diameter Nd:Phosphate glass rod amplifiers by using only a single actuator. The possibility to rapidly change focal lengths across two to three orders of magnitude has applications for remote sensing, such as laser induced breakdown spectroscopy, LIDAR, and control of laser filament formation.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner and B. Bass. Solid-State Lasers. (Springer, New York, 2003).
  2. P. H. Sarkies, "A stable yag resonator yielding a beam of very low divergence and high output energy," Opt. Commun. 31,189-92 (1979).
    [CrossRef]
  3. T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
    [CrossRef]
  4. E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
    [CrossRef]
  5. G. V. Vdovin and S. A. Chetkin, "Active correction of thermal lensing in solid-state lasers. II, use of a resonator with a controllable configuration," Kvantovaya Elektronika, Moskva Quantum Electronics 20,167-171 (1993).
  6. U. J. Greiner and H. H. Klingenberg, "Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror," Opt. Lett. 19,1207-1209 (1994).
  7. J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
    [CrossRef]
  8. S. K. Hawkes, A. Dunster, C. Hernandez-Gomez, and I. O. Musgrave. Pump induced aberration characterization and compensation for the vulcan petawatt beam. Central Laser Facility annual report 2004/2005, pps 194-196, 2004/2005.
  9. J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
    [CrossRef]
  10. D. Headley, M. Ramsey, and J. Schwarz. Variable focal length deformable mirror. U.S. Patent Application No. 11,017,337, filed on 12/20/2004.
  11. P. K. Rambo, I. C. Smith, J. L. Porter, M. J. Hurst, C. S. Speas, R. G. Adams, A. J. Garcia, E. Dawson, B. D. Thurston, C. Wakefield, J. W. Kellogg, M. J. Slattery, H. C. Ives, R. S. Broyles, J. A. Caird, A. C. Erlandson, J. E. Murray,W. C. Behrendt, N. D. Neilsen, and J. M. Narduzzi, "Z-Beamlet: A multikilojoule, terawatt-class laser system," Appl. Opt. 44,2421-2430 (2005).
    [CrossRef]
  12. Y. C. Warren and B. G. Richard. Roark’s Formulas for Stress and Strain. McGraw-Hill, New York, seventh edition, 2002.
  13. Schott. Optical glass catalog. http://www.us.schott.com/sgt/english/download/n-bk7.pdf, 1996.

2006

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

2005

2002

E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
[CrossRef]

2001

T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
[CrossRef]

1994

1993

G. V. Vdovin and S. A. Chetkin, "Active correction of thermal lensing in solid-state lasers. II, use of a resonator with a controllable configuration," Kvantovaya Elektronika, Moskva Quantum Electronics 20,167-171 (1993).

1979

P. H. Sarkies, "A stable yag resonator yielding a beam of very low divergence and high output energy," Opt. Commun. 31,189-92 (1979).
[CrossRef]

Adams, R. G.

Behrendt, W. C.

Broyles, R. S.

Caird, J. A.

Chetkin, S. A.

G. V. Vdovin and S. A. Chetkin, "Active correction of thermal lensing in solid-state lasers. II, use of a resonator with a controllable configuration," Kvantovaya Elektronika, Moskva Quantum Electronics 20,167-171 (1993).

Dawson, E.

Erlandson, A. C.

Garcia, A. J.

Graf, T.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
[CrossRef]

T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
[CrossRef]

Greiner, U. J.

Headley, D.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

Hurst, M. J.

Ives, H. C.

Kellogg, J. W.

Klingenberg, H. H.

Murray, J. E.

Narduzzi, J. M.

Neilsen, N. D.

Porter, J.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

Porter, J. L.

Rambo, P.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

Rambo, P. K.

Ramsey, M.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

Roth, M.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
[CrossRef]

T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
[CrossRef]

Sarkies, P. H.

P. H. Sarkies, "A stable yag resonator yielding a beam of very low divergence and high output energy," Opt. Commun. 31,189-92 (1979).
[CrossRef]

Schwarz, J.

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

Slattery, M. J.

Smith, I.

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

Smith, I. C.

Speas, C. S.

Thurston, B. D.

Vdovin, G. V.

G. V. Vdovin and S. A. Chetkin, "Active correction of thermal lensing in solid-state lasers. II, use of a resonator with a controllable configuration," Kvantovaya Elektronika, Moskva Quantum Electronics 20,167-171 (1993).

Wakefield, C.

Weber, H. P.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
[CrossRef]

T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
[CrossRef]

Wyss, E.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
[CrossRef]

T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B: Lasers and Optics

J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, "Thermal lens compensation by convex deformation of a flat mirror with variable annular force," Appl. Phys. B: Lasers and Optics 82,275-281 (2006).
[CrossRef]

IEEE J. of Quantum Electron.

E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermo optical compensation methods for high-power lasers," IEEE J. of Quantum Electron. 38,1620-8 (2002).
[CrossRef]

Kvantovaya Elektronika, Moskva Quantum Electronics

G. V. Vdovin and S. A. Chetkin, "Active correction of thermal lensing in solid-state lasers. II, use of a resonator with a controllable configuration," Kvantovaya Elektronika, Moskva Quantum Electronics 20,167-171 (1993).

Opt. Commun.

P. H. Sarkies, "A stable yag resonator yielding a beam of very low divergence and high output energy," Opt. Commun. 31,189-92 (1979).
[CrossRef]

T. Graf, E. Wyss, M. Roth, and H. P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun. 190,327-31 (2001).
[CrossRef]

J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, "Low order adaptive optics on ZBeamlet using a single actuator deformable mirror," Opt. Commun. 264,203 - 212 (2006).
[CrossRef]

Opt. Lett.

Other

W. Koechner and B. Bass. Solid-State Lasers. (Springer, New York, 2003).

S. K. Hawkes, A. Dunster, C. Hernandez-Gomez, and I. O. Musgrave. Pump induced aberration characterization and compensation for the vulcan petawatt beam. Central Laser Facility annual report 2004/2005, pps 194-196, 2004/2005.

D. Headley, M. Ramsey, and J. Schwarz. Variable focal length deformable mirror. U.S. Patent Application No. 11,017,337, filed on 12/20/2004.

Y. C. Warren and B. G. Richard. Roark’s Formulas for Stress and Strain. McGraw-Hill, New York, seventh edition, 2002.

Schott. Optical glass catalog. http://www.us.schott.com/sgt/english/download/n-bk7.pdf, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics