Abstract

Characterization and pulse shaping of octave spanning femtosecond lasers poses a significant challenge. We have constructed a grating-based pulse shaper for an ultra-broad-bandwidth (620–1020 nm) femtosecond laser, and used it to compensate the phase distortions of the laser, spatial-light modulator and optics within 0.1 rad accuracy accross the entire bandwidth using Multiphoton Intrapulse Interference Phase Scan (MIIPS) without a precompressor. The compensated transform limited pulses generated a second harmonic spectrum with a 12,260 cm-1 spectral width. Binary phase modulation was introduced by this pulse shaping system to demonstrate high resolution control of the second harmonic generation spectrum.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Baltuska, and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
    [CrossRef]
  2. M. Yamashita, K. Yamane, and R. Morita, "Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses," IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
    [CrossRef]
  3. T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
    [CrossRef]
  4. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  5. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  6. L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
    [CrossRef]
  7. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  8. P. Baum, S. Lochbrunner, and E. Riedle, "Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling," Opt. Lett. 29, 1686-1688 (2004).
    [CrossRef] [PubMed]
  9. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
    [CrossRef]
  10. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
    [CrossRef]
  11. V. V. Lozovoy, J. C. Shane, B. W. Xu, and M. Dantus, "Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy," Opt. Express 13, 10882-10887 (2005).
    [CrossRef] [PubMed]
  12. V. V. Lozovoy, and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 6, 1970-2000 (2005).
    [CrossRef] [PubMed]

2006 (2)

M. Yamashita, K. Yamane, and R. Morita, "Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses," IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

2005 (3)

V. V. Lozovoy, J. C. Shane, B. W. Xu, and M. Dantus, "Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy," Opt. Express 13, 10882-10887 (2005).
[CrossRef] [PubMed]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

V. V. Lozovoy, and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

2002 (2)

A. Baltuska, and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

2000 (2)

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Baltuska, A.

A. Baltuska, and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

Baum, P.

Binhammer, T.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Dantus, M.

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

V. V. Lozovoy, J. C. Shane, B. W. Xu, and M. Dantus, "Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy," Opt. Express 13, 10882-10887 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy, and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Dela Cruz, J. M.

Ell, R.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Gunn, J. M.

Kartner, F. X.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Kobayashi, T.

A. Baltuska, and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

Lochbrunner, S.

Lozovoy, V. V.

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

V. V. Lozovoy, J. C. Shane, B. W. Xu, and M. Dantus, "Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy," Opt. Express 13, 10882-10887 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy, and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Morgner, U.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Morita, R.

M. Yamashita, K. Yamane, and R. Morita, "Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses," IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

Nakagawa, N.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

Pastirk, I.

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Riedle, E.

Rittweger, E.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

Shane, J. C.

Shigekawa, H.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Xu, B. W.

Xu, L.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

Yamane, K.

M. Yamashita, K. Yamane, and R. Morita, "Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses," IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

Yamashita, M.

M. Yamashita, K. Yamane, and R. Morita, "Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses," IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

Appl. Phys. B (1)

A. Baltuska, and T. Kobayashi, "Adaptive shaping of two-cycle visible pulses using a flexible mirror," Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

Chem. Phys. Chem. (1)

V. V. Lozovoy, and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

T. Binhammer, E. Rittweger, R. Ell, F. X. Kartner, and U. Morgner, "Prism-based pulse shaper for octave spanning spectra," IEEE J. Quantum Electron. 41, 1552-1557 (2005).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, "Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper," IEEE J. Quantum Electron. 36, 893-899 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Yamashita, K. Yamane, and R. Morita, "Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses," IEEE J. Sel. Top. Quantum Electron. 12, 213-222 (2006).
[CrossRef]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig 1.
Fig 1.

Experimental setup. O=oscillator, SM1 and SM2=reflective 1: 2.5 telescope, PH=pinhole, G=grating, FM=folding mirror, SM=spherical mirror, SLM=spatial light modulator, C = KDP crystal, SM3 =spherical mirror, P =prism, L =lens, RB=razor blade, M= mirror, S=spectrometer. Red and blue lines represent the fundamental and SHG beam, respectively.

Fig. 2.
Fig. 2.

MIIPS traces of the first (a) and last (b) iterations. Each vertical line of the MIIPS trace corresponds to a SHG spectrum generated at given value of δ (redder colors represent higher intensities). The black lines that separate the MIIPS traces are used to define the region for searching the maximum value of the SHG for each δ. The black dots within those boundaries show these maxima. The position of these maxima allows MIIPS to extract the phase. For TL pulses, the features form parallel lines separated by π.

Fig. 3.
Fig. 3.

(a) Spectrum of the fundamental pulses and residual phase after MIIPS compensation. (b) Measured (blue) and simulated (red) SHG spectra of the compensated pulses

Fig. 4.
Fig. 4.

(a) Spectrum of the fundamental pulses and residual phase after MIIPS compensation. (b) Measured (blue) and simulated (red) second harmonic spectra of the compensated pulses. The SHG spectrum was normalized with respect to the TL SHG spectrum intensity.

Fig. 5.
Fig. 5.

Bottom: Second harmonic spectrum of binary phase shaped pulses (normalized with respect to the TL SHG spectrum intensity). Peaks occur at symmetry points of the phase, as expected Top: Pseudorandom 120 bit binary phase applied

Metrics