Abstract

The holographic optical trapping technique creates arbitrary three-dimensional configurations of optical traps, each with individually specified characteristics. Holographic modification of the individual traps’ wavefronts can transform conventional point-like optical tweezers into traps with different structures and properties, and can position them independently in three dimensions. Here, we describe a technique for rapidly characterizing holographic optical traps’ three-dimensional intensity distributions. We create volumetric representations by by holographically translating the traps through the optical train’s focal plane, acquiring a stack of two-dimensional images in the process. We apply this technique to holographic line traps, which are used to create tailored one-dimensional potential energy landscapes for mesoscopic objects. These measurements highlight problems that can arise when projecting extended traps with conventional optics and demonstrates the effectiveness of shape-phase holography for creating nearly ideal line traps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu “Observation of a single-beam gradient force optical trap for dielectric particles.” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
    [CrossRef]
  3. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
    [CrossRef]
  4. R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
    [CrossRef]
  5. Y. Roichman and D. G. Grier. “Projecting extended optical traps with shape-phase holography.” Opt. Lett. 31, 1675–1677 (2006).
    [CrossRef] [PubMed]
  6. E. R. Dufresne and D. G. Grier. “Optical tweezer arrays and optical substrates created with diffractive optical elements.” Rev. Sci. Instrum. 69, 1974–1977 (1998).
    [CrossRef]
  7. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier. “Optimized holographic optical traps.” Opt. Express 13, 5831–5845 (2005).
    [CrossRef] [PubMed]
  8. J. W. Goodman. Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed.
  9. M. Born and E. WolfPrinciples of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.
  10. Y. Roichman, A. S. Waldron, E. Gardel, and D. G. Grier. “Performance of optical traps with geometric aberrations.” Appl. Opt. 45, 3425–3429 (2005).
    [CrossRef]
  11. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
    [CrossRef]
  12. Y. Roichman and D. G. Grier. “Holographic assembly of quasicrystalline photonic heterostructures.” Opt. Express 13, 5434–5439 (2005).
    [CrossRef] [PubMed]
  13. K. Sasaki, M. Koshio, H. Misawa, N. Kitamura, and H. Masuhara. “Pattern formation and flow control of fine particles by laser-scanning micromanipulation.” Opt. Lett. 16, 1463–1465 (1991).
    [CrossRef] [PubMed]
  14. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
    [CrossRef] [PubMed]
  15. L. P. Faucheux, G. Stolovitzky, and A. Libchaber. “Periodic forcing of a Brownian particle.” Phys. Rev. E 51, 5239–5250 (1995).
    [CrossRef]
  16. T. Yu, F.-C. Cheong, and C.-H. Sow. “The manipulation and assembly of CuO nanorods with line optical tweezers.” Nanotechnology 15, 1732–1736 (2004).
    [CrossRef]
  17. P. L. Biancaniello, A. J. Kim, and J. C. Crocker. “Colloidal interactions and self-assembly using DNA hybridization.” Phys. Rev. Lett. 94, 058302 (2005).
    [CrossRef] [PubMed]
  18. K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan. “Multiple optical line traps using a single phase-only rectangular ridge.” Appl. Phys. B 80, 973–976 (2005).
    [CrossRef]
  19. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
    [CrossRef]
  20. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett. “3D interferometric optical tweezers using a single spatial light modulator.” Opt. Express 13, 3777–3786 (2005).
    [CrossRef] [PubMed]

2006 (1)

2005 (6)

2004 (1)

T. Yu, F.-C. Cheong, and C.-H. Sow. “The manipulation and assembly of CuO nanorods with line optical tweezers.” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

2000 (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
[CrossRef]

1999 (1)

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

1998 (2)

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
[CrossRef]

E. R. Dufresne and D. G. Grier. “Optical tweezer arrays and optical substrates created with diffractive optical elements.” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

1997 (1)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

1995 (2)

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

L. P. Faucheux, G. Stolovitzky, and A. Libchaber. “Periodic forcing of a Brownian particle.” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

1991 (1)

1986 (1)

Ashkin, A.

Berns, M. W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

Biancaniello, P. L.

P. L. Biancaniello, A. J. Kim, and J. C. Crocker. “Colloidal interactions and self-assembly using DNA hybridization.” Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Born, M.

M. Born and E. WolfPrinciples of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

Bourdieu, L. S.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Cheong, F.-C.

T. Yu, F.-C. Cheong, and C.-H. Sow. “The manipulation and assembly of CuO nanorods with line optical tweezers.” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Cheong, W. C.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan. “Multiple optical line traps using a single phase-only rectangular ridge.” Appl. Phys. B 80, 973–976 (2005).
[CrossRef]

Chiou, A. E.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

Chu, S.

Cooper, J.

Courtial, J.

Crocker, J. C.

P. L. Biancaniello, A. J. Kim, and J. C. Crocker. “Colloidal interactions and self-assembly using DNA hybridization.” Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
[CrossRef]

Dinsmore, A. D.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier. “Optical tweezer arrays and optical substrates created with diffractive optical elements.” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Dziedzic, J. M.

Faucheux, L. P.

L. P. Faucheux, G. Stolovitzky, and A. Libchaber. “Periodic forcing of a Brownian particle.” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Gardel, E.

Goodman, J. W.

J. W. Goodman. Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed.

Grier, D. G.

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Hong, J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

Jordan, P.

Kaplan, P. D.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Kim, A. J.

P. L. Biancaniello, A. J. Kim, and J. C. Crocker. “Colloidal interactions and self-assembly using DNA hybridization.” Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

Kitamura, N.

Koshio, M.

Ladavac, K.

Lee, S.-H.

Lee, W. M.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan. “Multiple optical line traps using a single phase-only rectangular ridge.” Appl. Phys. B 80, 973–976 (2005).
[CrossRef]

Libchaber, A.

L. P. Faucheux, G. Stolovitzky, and A. Libchaber. “Periodic forcing of a Brownian particle.” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

Libchaber, A. J.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Lubensky, T. C.

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
[CrossRef]

Masuhara, H.

Matteo, J. A.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

Misawa, H.

Moh, K. J.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan. “Multiple optical line traps using a single phase-only rectangular ridge.” Appl. Phys. B 80, 973–976 (2005).
[CrossRef]

Padgett, M.

Piestun, R.

Polin, M.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Roichman, Y.

Sasaki, K.

Schonbrun, E.

Sonek, G. J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

Sow, C.-H.

T. Yu, F.-C. Cheong, and C.-H. Sow. “The manipulation and assembly of CuO nanorods with line optical tweezers.” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Stolovitzky, G.

L. P. Faucheux, G. Stolovitzky, and A. Libchaber. “Periodic forcing of a Brownian particle.” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Verma, R.

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
[CrossRef]

Waldron, A. S.

Wang, W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

Wolf, E.

M. Born and E. WolfPrinciples of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

Wulff, K. D.

Yodh, A. G.

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
[CrossRef]

Yu, T.

T. Yu, F.-C. Cheong, and C.-H. Sow. “The manipulation and assembly of CuO nanorods with line optical tweezers.” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Yuan, X.-C.

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan. “Multiple optical line traps using a single phase-only rectangular ridge.” Appl. Phys. B 80, 973–976 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan. “Multiple optical line traps using a single phase-only rectangular ridge.” Appl. Phys. B 80, 973–976 (2005).
[CrossRef]

Macromolecules (1)

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Attractions between hard colloidal spheres in semi-flexible polymer solutions.” Macromolecules 33, 177–186 (2000).
[CrossRef]

Nanotechnology (1)

T. Yu, F.-C. Cheong, and C.-H. Sow. “The manipulation and assembly of CuO nanorods with line optical tweezers.” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Opt. Comm. (1)

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns. “Interferometric optical tweezers.” Opt. Comm. 133, 7–10 (1997).
[CrossRef]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani. “Multi-functional optical tweezers using computer-generated holograms.” Opt. Commun. 185, 77–82 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. E (1)

L. P. Faucheux, G. Stolovitzky, and A. Libchaber. “Periodic forcing of a Brownian particle.” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

Phys. Rev. Lett. (4)

P. L. Biancaniello, A. J. Kim, and J. C. Crocker. “Colloidal interactions and self-assembly using DNA hybridization.” Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh. “Entropic colloidal interactions in concentrated DNA solutions.” Phys. Rev. Lett. 81, 4004–4007 (1998).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh. “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer.” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber. “Optical thermal ratchet.” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier. “Optical tweezer arrays and optical substrates created with diffractive optical elements.” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Other (2)

J. W. Goodman. Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed.

M. Born and E. WolfPrinciples of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

Supplementary Material (1)

» Media 1: GIF (3788 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Projecting extended optical traps with computer generated holograms.

Fig. 2.
Fig. 2.

Virtually all of the light focused by the objective lens onto the mirror is collected for z ≤ 0. For z > 0, by contrast, the outermost rays fall outside the objective’s pupil, reducing the overall collection efficiency. This figure also indicates the sign convention for z.

Fig. 3.
Fig. 3.

(a) Three-dimensional reconstruction of an optical tweezer propagating along the z axis. Cross-sections in the xy, yz and xz planes are colored by intensity according to the inset scale. The horizontal dashed line indicates the plane z = z 0 in which the xy section is obtained. The inset isosurface encloses 95 percent of the incident light and the scale bar denotes 5 μm. (b) Volumetric reconstruction of 35 optical tweezers arranged in a body-centered cubic lattice. [Media 1]

Fig. 4.
Fig. 4.

(a) Reconstruction of a cylindrical lens line tweezer. (b) Three-dimensional reconstruction of a holographic optical line trap featuring diffraction-limited convergence to a single focal plane.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψ ( r ) = i λf Ω ψ ( ρ ) exp ( i 2 π λf r · ρ ) d 2 ρ ,
ψ ( ρ ) = u ( ρ ) exp ( ( ρ ) ) ,
φ z ( ρ ) = π ρ 2 z λ f 2 ,
φ a ( ρ ) = a 2 ( 6 x 4 6 x 2 + 1 ) ,
ψ ( ρ ) = u ( ρ x ) exp ( ip ( ρ x ) ) ,
φ ( ρ ) = { p ( ρ x ) , S ( ρ ) = 1 q ( ρ ) , S ( ρ ) = 0 ,

Metrics