Abstract

The holographic optical trapping technique creates arbitrary three-dimensional configurations of optical traps, each with individually specified characteristics. Holographic modification of the individual traps’ wavefronts can transform conventional point-like optical tweezers into traps with different structures and properties, and can position them independently in three dimensions. Here, we describe a technique for rapidly characterizing holographic optical traps’ three-dimensional intensity distributions. We create volumetric representations by by holographically translating the traps through the optical train’s focal plane, acquiring a stack of two-dimensional images in the process. We apply this technique to holographic line traps, which are used to create tailored one-dimensional potential energy landscapes for mesoscopic objects. These measurements highlight problems that can arise when projecting extended traps with conventional optics and demonstrates the effectiveness of shape-phase holography for creating nearly ideal line traps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu. "Observation of a single-beam gradient force optical trap for dielectric particles." Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
    [CrossRef]
  3. J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
    [CrossRef]
  4. R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
    [CrossRef]
  5. Y. Roichman and D. G. Grier. "Projecting extended optical traps with shape-phase holography." Opt. Lett. 31, 1675-1677 (2006).
    [CrossRef] [PubMed]
  6. E. R. Dufresne and D. G. Grier. "Optical tweezer arrays and optical substrates created with diffractive optical elements." Rev. Sci. Instrum. 69, 1974-1977 (1998).
    [CrossRef]
  7. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman and D. G. Grier. "Optimized holographic optical traps." Opt. Express 13, 5831-5845 (2005).
    [CrossRef] [PubMed]
  8. J. W. Goodman. Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed.
  9. M. Born and E. Wolf. Principles of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.
  10. Y. Roichman, A. S. Waldron, E. Gardel and D. G. Grier. "Performance of optical traps with geometric aberrations," Appl. Opt. 45, 3425-3429 (2005).
    [CrossRef]
  11. J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  12. Y. Roichman and D. G. Grier. "Holographic assembly of quasicrystalline photonic heterostructures." Opt. Express 13, 5434-5439 (2005).
    [CrossRef] [PubMed]
  13. K. Sasaki, M. Koshio, H. Misawa, N. Kitamura and H. Masuhara. "Pattern formation and flow control of fine particles by laser-scanning micromanipulation." Opt. Lett. 16, 1463-1465 (1991).
    [CrossRef] [PubMed]
  14. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
    [CrossRef] [PubMed]
  15. L. P. Faucheux, G. Stolovitzky and A. Libchaber. "Periodic forcing of a Brownian particle." Phys. Rev. E 51, 5239-5250 (1995).
    [CrossRef]
  16. T. Yu, F.-C. Cheong and C.-H. Sow. "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
    [CrossRef]
  17. P. L. Biancaniello, A. J. Kim and J. C. Crocker. "Colloidal interactions and self-assembly using DNA hybridization." Phys. Rev. Lett. 94, 058302 (2005).
    [CrossRef] [PubMed]
  18. K. J. Moh, W. M. Lee, W. C. Cheong and X.-C. Yuan. "Multiple optical line traps using a single phase-only rectangular ridge." Appl. Phys. B 80, 973-976 (2005).
    [CrossRef]
  19. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
    [CrossRef]
  20. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial and M. Padgett. "3D interferometric optical tweezers using a single spatial light modulator." Opt. Express 13, 3777-3786 (2005).
    [CrossRef] [PubMed]

2006

2005

2004

T. Yu, F.-C. Cheong and C.-H. Sow. "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

2000

J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
[CrossRef]

1999

J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
[CrossRef]

1998

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
[CrossRef]

E. R. Dufresne and D. G. Grier. "Optical tweezer arrays and optical substrates created with diffractive optical elements." Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

1997

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

1995

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

L. P. Faucheux, G. Stolovitzky and A. Libchaber. "Periodic forcing of a Brownian particle." Phys. Rev. E 51, 5239-5250 (1995).
[CrossRef]

1991

1986

Ashkin, A.

Berns, M. W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

Biancaniello, P. L.

P. L. Biancaniello, A. J. Kim and J. C. Crocker. "Colloidal interactions and self-assembly using DNA hybridization." Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bourdieu, L. S.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Cheong, F.-C.

T. Yu, F.-C. Cheong and C.-H. Sow. "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

Cheong, W. C.

K. J. Moh, W. M. Lee, W. C. Cheong and X.-C. Yuan. "Multiple optical line traps using a single phase-only rectangular ridge." Appl. Phys. B 80, 973-976 (2005).
[CrossRef]

Chiou, A. E.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

Chu, S.

Cooper, J.

Courtial, J.

Crocker, J. C.

P. L. Biancaniello, A. J. Kim and J. C. Crocker. "Colloidal interactions and self-assembly using DNA hybridization." Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
[CrossRef]

Dinsmore, A. D.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier. "Optical tweezer arrays and optical substrates created with diffractive optical elements." Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Dziedzic, J. M.

Faucheux, L. P.

L. P. Faucheux, G. Stolovitzky and A. Libchaber. "Periodic forcing of a Brownian particle." Phys. Rev. E 51, 5239-5250 (1995).
[CrossRef]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Gardel, E.

Grier, D. G.

Haist, T.

J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Hong, J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

Jordan, P.

Kaplan, P. D.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Kim, A. J.

P. L. Biancaniello, A. J. Kim and J. C. Crocker. "Colloidal interactions and self-assembly using DNA hybridization." Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

Kitamura, N.

Koshio, M.

Ladavac, K.

Lee, S.-H.

Lee, W. M.

K. J. Moh, W. M. Lee, W. C. Cheong and X.-C. Yuan. "Multiple optical line traps using a single phase-only rectangular ridge." Appl. Phys. B 80, 973-976 (2005).
[CrossRef]

Libchaber, A.

L. P. Faucheux, G. Stolovitzky and A. Libchaber. "Periodic forcing of a Brownian particle." Phys. Rev. E 51, 5239-5250 (1995).
[CrossRef]

Libchaber, A. J.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Lubensky, T. C.

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
[CrossRef]

Masuhara, H.

Matteo, J. A.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
[CrossRef]

Misawa, H.

Moh, K. J.

K. J. Moh, W. M. Lee, W. C. Cheong and X.-C. Yuan. "Multiple optical line traps using a single phase-only rectangular ridge." Appl. Phys. B 80, 973-976 (2005).
[CrossRef]

Padgett, M.

Piestun, R.

Polin, M.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Roichman, Y.

Sasaki, K.

Schonbrun, E.

Sonek, G. J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

Sow, C.-H.

T. Yu, F.-C. Cheong and C.-H. Sow. "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

Stolovitzky, G.

L. P. Faucheux, G. Stolovitzky and A. Libchaber. "Periodic forcing of a Brownian particle." Phys. Rev. E 51, 5239-5250 (1995).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Verma, R.

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
[CrossRef]

Waldron, A. S.

Wang, W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

Wulff, K. D.

Yodh, A. G.

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
[CrossRef]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
[CrossRef]

Yu, T.

T. Yu, F.-C. Cheong and C.-H. Sow. "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

Yuan, X.-C.

K. J. Moh, W. M. Lee, W. C. Cheong and X.-C. Yuan. "Multiple optical line traps using a single phase-only rectangular ridge." Appl. Phys. B 80, 973-976 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

K. J. Moh, W. M. Lee, W. C. Cheong and X.-C. Yuan. "Multiple optical line traps using a single phase-only rectangular ridge." Appl. Phys. B 80, 973-976 (2005).
[CrossRef]

Macromolecules

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Attractions between hard colloidal spheres in semi-flexible polymer solutions." Macromolecules 33, 177-186 (2000).
[CrossRef]

Nanotechnology

T. Yu, F.-C. Cheong and C.-H. Sow. "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology 15, 1732-1736 (2004).
[CrossRef]

Opt. Commun.

J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani. "Multi-functional optical tweezers using computergenerated holograms." Opt. Commun. 185, 77-82 (2000).
[CrossRef]

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong and M. W. Berns. "Interferometric optical tweezers." Opt. Commun. 133, 7-10 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

L. P. Faucheux, G. Stolovitzky and A. Libchaber. "Periodic forcing of a Brownian particle." Phys. Rev. E 51, 5239-5250 (1995).
[CrossRef]

Phys. Rev. Lett.

P. L. Biancaniello, A. J. Kim and J. C. Crocker. "Colloidal interactions and self-assembly using DNA hybridization." Phys. Rev. Lett. 94, 058302 (2005).
[CrossRef] [PubMed]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan and A. J. Libchaber. "Optical thermal ratchet." Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh. "Entropic colloidal interactions in concentrated DNA solutions." Phys. Rev. Lett. 81, 4004-4007 (1998).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore and A. G. Yodh. "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer." Phys. Rev. Lett. 82, 4352-4355 (1999).
[CrossRef]

Rev. Sci. Instrum.

E. R. Dufresne and D. G. Grier. "Optical tweezer arrays and optical substrates created with diffractive optical elements." Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Other

J. W. Goodman. Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed.

M. Born and E. Wolf. Principles of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

Supplementary Material (1)

» Media 1: GIF (3788 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Projecting extended optical traps with computer generated holograms.

Fig. 2.
Fig. 2.

Virtually all of the light focused by the objective lens onto the mirror is collected for z ≤ 0. For z > 0, by contrast, the outermost rays fall outside the objective’s pupil, reducing the overall collection efficiency. This figure also indicates the sign convention for z.

Fig. 3.
Fig. 3.

(a) Three-dimensional reconstruction of an optical tweezer propagating along the z axis. Cross-sections in the xy, yz and xz planes are colored by intensity according to the inset scale. The horizontal dashed line indicates the plane z = z 0 in which the xy section is obtained. The inset isosurface encloses 95 percent of the incident light and the scale bar denotes 5 μm. (b) Volumetric reconstruction of 35 optical tweezers arranged in a body-centered cubic lattice. [Media 1]

Fig. 4.
Fig. 4.

(a) Reconstruction of a cylindrical lens line tweezer. (b) Three-dimensional reconstruction of a holographic optical line trap featuring diffraction-limited convergence to a single focal plane.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψ ( r ) = i λf Ω ψ ( ρ ) exp ( i 2 π λf r · ρ ) d 2 ρ ,
ψ ( ρ ) = u ( ρ ) exp ( ( ρ ) ) ,
φ z ( ρ ) = π ρ 2 z λ f 2 ,
φ a ( ρ ) = a 2 ( 6 x 4 6 x 2 + 1 ) ,
ψ ( ρ ) = u ( ρ x ) exp ( ip ( ρ x ) ) ,
φ ( ρ ) = { p ( ρ x ) , S ( ρ ) = 1 q ( ρ ) , S ( ρ ) = 0 ,

Metrics