Abstract

We propose and analyze shear discontinuities as a new type of defect in photonic crystals. This defect can support guided modes with minimum group velocity dispersion (GVD) and maximum bandwidth, provided that the shear shift equals half the lattice constant. A mode gap emerges when the shear shift is different than half the lattice constant. The shear shift can be used to tune the bandwidth, group velocity, and group velocity dispersion (GVD) of the guided mode. The necessary condition for the existence of guided modes along the shear plane is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton University Press, 1995).
  2. K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991).
    [CrossRef] [PubMed]
  4. R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
    [CrossRef]
  5. P. Yeh, Optical waves in layered media (Wiley, New York, 1988).
  6. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
    [CrossRef]
  7. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
    [CrossRef]
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
    [CrossRef]
  9. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
    [CrossRef] [PubMed]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
    [CrossRef] [PubMed]
  11. W. Tung and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81,3915 (2002).
    [CrossRef]
  12. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
    [CrossRef]
  13. T. Sondergaard and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203,263 (2002).
    [CrossRef]
  14. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
    [CrossRef] [PubMed]
  15. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998).
    [CrossRef]
  16. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  17. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996).
    [CrossRef]
  18. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
    [CrossRef]
  19. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
    [CrossRef]
  20. M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003).
    [CrossRef]
  21. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003).
    [CrossRef] [PubMed]
  22. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
    [CrossRef]
  23. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993).
    [CrossRef] [PubMed]
  24. E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
    [CrossRef] [PubMed]
  25. K. Tian, G. Babarstathis, and J. Hong, "Localized propagation modes guided by shear discontinuities in photonic crystals" in Frontiers in Optics/Laser Science conferences, (Optical Society of America, Tucson, Arizona, Oct. 2005), Paper FWI4.
  26. K. Tian, G. Babarstathis, and J. Hong, "Tunable group velocity in a coupled-resonator optical waveguide (CROW) formed by shear discontinuities in a photonic crystal," under preparation.
  27. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999).
    [CrossRef]

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
[CrossRef]

2003 (4)

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
[CrossRef]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Sondergaard and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203,263 (2002).
[CrossRef]

W. Tung and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81,3915 (2002).
[CrossRef]

2001 (2)

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

1999 (3)

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999).
[CrossRef]

1998 (3)

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

1996 (1)

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996).
[CrossRef]

1994 (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

1993 (2)

R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993).
[CrossRef] [PubMed]

1991 (2)

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991).
[CrossRef] [PubMed]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990).
[CrossRef] [PubMed]

Adibi, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

Alerhand, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
[CrossRef]

Arjavalingam, G.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003).
[CrossRef] [PubMed]

Brommer, K. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990).
[CrossRef] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

Chow, E.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

Devenyi, A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
[CrossRef]

Fan, S.

W. Tung and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81,3915 (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996).
[CrossRef]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

Gauthies, D. J.

M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003).
[CrossRef]

Gmiter, T. J.

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
[CrossRef]

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990).
[CrossRef] [PubMed]

Jafarpour, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
[CrossRef]

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

Lavrinenko, A.

T. Sondergaard and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203,263 (2002).
[CrossRef]

Lee, R. K.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003).
[CrossRef] [PubMed]

Leung, L. M.

E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991).
[CrossRef] [PubMed]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
[CrossRef]

Meade, R. D.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993).
[CrossRef] [PubMed]

R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
[CrossRef]

Meade, R. M.

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998).
[CrossRef]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
[CrossRef]

Rappe, A. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993).
[CrossRef] [PubMed]

R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
[CrossRef]

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

Robertson, W. M.

Scherer, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999).
[CrossRef]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

Sondergaard, T.

T. Sondergaard and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203,263 (2002).
[CrossRef]

Soulouis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990).
[CrossRef] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

Tung, W.

W. Tung and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81,3915 (2002).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
[CrossRef]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

Xu, Y.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

Yariv, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

W. Tung and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81,3915 (2002).
[CrossRef]

J. Appl. Phys. (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994).
[CrossRef]

Nature (London) (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999).
[CrossRef]

M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005).
[CrossRef]

Opt. Commun. (1)

T. Sondergaard and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203,263 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (7)

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998).
[CrossRef]

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999).
[CrossRef]

R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993).
[CrossRef]

Phys. Rev. Lett. (4)

K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991).
[CrossRef] [PubMed]

Science (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003).
[CrossRef] [PubMed]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998).
[CrossRef] [PubMed]

Other (5)

P. Yeh, Optical waves in layered media (Wiley, New York, 1988).

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton University Press, 1995).

K. Tian, G. Babarstathis, and J. Hong, "Localized propagation modes guided by shear discontinuities in photonic crystals" in Frontiers in Optics/Laser Science conferences, (Optical Society of America, Tucson, Arizona, Oct. 2005), Paper FWI4.

K. Tian, G. Babarstathis, and J. Hong, "Tunable group velocity in a coupled-resonator optical waveguide (CROW) formed by shear discontinuities in a photonic crystal," under preparation.

Supplementary Material (1)

» Media 1: AVI (1261 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Two dimensional photonic crystals: (a) square lattice of dielectric rods in air, with lattice constant a and radius r = 0.2a (b) photonic crystal lattice with shear discontinuity (sheared photonic crystals) with shear shift s = a/2 and cylinder section height at the interface h = r.

Fig. 2.
Fig. 2.

A pulse is coupled in by a slab waveguide and propagates inside the sheared photonic crystal. The pulse duration is 10fs and the center wavelength is 550nm. Plane A is at the end of the slab waveguide and Plane B is located 5.5μm away from Plane A. [Media 1]

Fig. 3.
Fig. 3.

Dispersion relation for the sheared photonic crystals when s = a/2. Solid line: half circular rods at the interface h = r; dash-dot line: entire circular rods at the interface h = r+a/2.

Fig. 4.
Fig. 4.

Incident power spectrum at Plane A (the reflected power due to impedance mismatch between the slab waveguide and the sheared photonic crystal is subtracted) and coupled-in power calculated at Plane B, and coupling efficiency when a 10fs pulse with center wavelength of 550nm is input into the sheared photonic crystal.

Fig. 5.
Fig. 5.

Incident power spectrum at Plane A (the reflected power due to impedance mismatch between the slab waveguide and the sheared photonic crystal is subtracted) and coupled-in power calculated at Plane B, and coupling efficiency when a 3fs pulse with center wavelength of 550nm is input into the sheared photonic crystal.

Fig. 6.
Fig. 6.

Dispersion relation for the sheared photonic crystal with different shear shifts. Half circular rods are at the interface h = r.

Fig. 7.
Fig. 7.

Mode gap versus shear shift s of the sheared photonic crystals. Cross symbols indicate the mode gap measured from FDTD simulations.

Fig. 8.
Fig. 8.

Coupling efficiency spectra for different values of shear shift s. 3fs pulses with center wavelength of 550nm are input into the sheared photonic crystals.

Fig. 9.
Fig. 9.

Group velocity spectra for different values of shear shift s of the sheared photonic crystals.

Fig. 10.
Fig. 10.

(a) Geometry of a slice of sheared photonic crystal with shear shift s = a/2 and thickness 2a sandwiched between two semi-infinite sheared photonic crystals of s = a/4. (b) Electric field for the bound state at ω= 0.334×2π/a in the geometry shown in (a).

Fig. 11.
Fig. 11.

Dispersion relations for sheared photonic crystals with different values of h when s = a/2. Truncating rods at the interface creates guided modes originated from dielectric band.

Fig. 12.
Fig. 12.

Optimization for the dispersion relations with s = a/2 and h as optimization parameter.

Fig. 13.
Fig. 13.

Group velocity dispersion parameter β 2 versus h for s = a/2.

Metrics