Abstract

We report the fabrication, characterization and modeling of an all-solid photonic bandgap fiber (PBGF) based on an array of oriented rectangular rods. Observed near-field patterns of cladding modes clearly identify the cut-off rod modes at the bandgap edges. The bend losses in this fiber depend on the bend direction, and can be understood by the directional coupling properties of the different rod modes and the modeled density of cladding states.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, P. St. J. Russell, "All-solid photonic band gap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  2. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
    [CrossRef] [PubMed]
  3. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005).
    [CrossRef] [PubMed]
  4. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291-6296 (2006).
    [CrossRef] [PubMed]
  5. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, D. M. Bird, "Bend loss in all-solid bandgap fibers," Opt. Express 14, 5688 (2006).
    [CrossRef] [PubMed]
  6. A.  Wang, A. K.  George, and J. C.  Knight, "Three-level neodymium laser incorporating photonic bandgap fiber," Opt. Lett.  31, 1388-1390 (2006).
    [CrossRef] [PubMed]
  7. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]
  8. section ? and ?? of G. J. Pearce, T. D. Hedley, D. M. Bird, "Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals," Phys. Rev. B 71, 195108 (2005).
    [CrossRef]
  9. J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).
  10. E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2071-2102 (1969).

2006

2005

2004

2003

1969

J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2071-2102 (1969).

Argyros, A.

Bigot, L.

Bird, D. M.

Birks, T.

Birks, T. A.

Bouwmans, G.

Cordeiro, C. M.

de Sterke, C. M.

Douay, M.

Dunn, S. C.

Eggleton, B. J.

George, A. K.

Goell, J. E.

J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).

Hedley, T. D.

Knight, J. C.

Leon-Saval, S.

Litchinitser, N. M.

Lopez, F.

Luan, F.

Marcatili, E. A. J.

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2071-2102 (1969).

McPhedran, R. C.

Pearce, G. J.

Provino, L.

Quiquempois, Y.

Russell, P. S. J.

Russell, P. St. J.

Stone, J. M.

Usner, B.

Wang, A.

White, T.

Bell Syst. Tech. J.

J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).

Bell. Syst. Tech. J.

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2071-2102 (1969).

Opt. Express

Opt. Lett.

Phys. Rev. B

section ? and ?? of G. J. Pearce, T. D. Hedley, D. M. Bird, "Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals," Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Optical micrograph of a cane with a rectangular inclusion made from an array of raised-index rods; b) scanning electron micrograph of the final fiber; c) close-up of the core region in b), rod pitch: 13.8μm, length (D)/width (W): 7/1, D/Λ=0.67.

Fig. 2.
Fig. 2.

Calculated DOS for a triangular lattice of step-index rectangular rods in a low-index background as described in Section 2. The geometry of the rectangular rods and lattices were chosen to be the same as the fiber displayed in Fig. 1.

Fig. 3.
Fig. 3.

Transmission spectrum of the fiber shown in Fig.1 as a function of normalized frequency (kΛ) and wavelength in central diagram. The top 4 pictures A, B, C and D show the near field patterns in the middle of bandgaps 3 to 6, respectively. The bottom four A’, B’, C, and D’ present the near field patterns at the corresponding bandgap edges. Images E and F are enlarged images of the cladding region in images B’ and D’ respectively.

Fig. 4.
Fig. 4.

Directional bend losses. a) the orientation of the cladding rods; b) the fiber bent in-plane and out-of-plane; c) transmission spectra of 30cm of fiber for different bend directions. The length of bent region in this fiber was about 8cm with the bend diameter of 16cm. The fiber was straight (black solid line), bent out-of-plane (red solid line) and bent in-plane (blue dashed line).

Metrics