Abstract

Experimental results for refractive index variation induced by depletion in a silicon structure integrated in a PIN diode are reported. Thermal effect has been dissociated from the electrical contribution due to carrier density variation induced by a reverse bias voltage. A figure of merit VπLπ of 3.1 V.cm has been obtained at 1.55μm. Numerical simulations show a good agreement between experimental and theoretical index variations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, and C. E. J. Png, "Silicon optical modulators," Materials Todays 40-50, (2005).
    [CrossRef]
  2. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
    [CrossRef] [PubMed]
  3. P. Yu, J. Wu, and B. Zhu "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328 (2006).
    [CrossRef]
  4. Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
    [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
    [CrossRef] [PubMed]
  7. A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
    [CrossRef]
  8. D. Marris, E. Cassan, and L. Vivien, "Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation," J. Appl. Phys. 96, 6109-6112, (2004).
    [CrossRef]
  9. D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fédéli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, "High speed all-silicon modulation-doped optical modulator," presented at the EMRS-spring meeting, Nice, 29 mai-2 june 2006.
  10. S. Maine, D. Marris-Morini, L. Vivien, D. Pascal, E. Cassan, and S. Laval, "Design optimisation of SiGe/Si:modulation-doped multiple quantum well modulator for high speed operation," in Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, G. C. Righini, ed., Proc SPIE 6183 (2006), 618360D1-6.
    [CrossRef]
  11. ISE software, http://www.ise.com/.
  12. R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23123-129 (1987).
    [CrossRef]
  13. PhotonDesign software, http://www.photond.com.

2006

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

P. Yu, J. Wu, and B. Zhu "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328 (2006).
[CrossRef]

2005

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach Zehnder modulator," Opt. Express 13, 3129-3135 (2005).
[CrossRef] [PubMed]

2004

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

D. Marris, E. Cassan, and L. Vivien, "Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation," J. Appl. Phys. 96, 6109-6112, (2004).
[CrossRef]

1987

R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23123-129 (1987).
[CrossRef]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Bennett, B.

R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23123-129 (1987).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Cassan, E.

D. Marris, E. Cassan, and L. Vivien, "Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation," J. Appl. Phys. 96, 6109-6112, (2004).
[CrossRef]

Cercus, J.-L.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

Cordat, A.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

Franck, T.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Ge, Y.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Harris, J.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Hodge, D.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Kamins, T.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Keil, U. D.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Kuo, Y.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Laval, S.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Lee, Y.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Liao, L.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Liu, A.

Lupu, A.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

Marris, D.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

D. Marris, E. Cassan, and L. Vivien, "Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation," J. Appl. Phys. 96, 6109-6112, (2004).
[CrossRef]

Miller, D.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Morse, M.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Page-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Pascal, D.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Ren, S.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Roth, J.

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Rubin, D.

Samara-Rubio, D.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Soref, R.

R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23123-129 (1987).
[CrossRef]

Thanh, V. L.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

Vivien, L.

D. Marris, E. Cassan, and L. Vivien, "Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation," J. Appl. Phys. 96, 6109-6112, (2004).
[CrossRef]

Wu, J.

P. Yu, J. Wu, and B. Zhu "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328 (2006).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Yu, P.

P. Yu, J. Wu, and B. Zhu "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328 (2006).
[CrossRef]

Zhu, B.

P. Yu, J. Wu, and B. Zhu "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328 (2006).
[CrossRef]

Zsidri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. L. Thanh, and S. Laval, "Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures," Appl. Phys. Lett. 85, 887-889, (2004).
[CrossRef]

IEEE J. Quantum Electron.

R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23123-129 (1987).
[CrossRef]

J. Appl. Phys.

D. Marris, E. Cassan, and L. Vivien, "Time response analysis of SiGe/Si modulation-doped multiple quantum well structures for optical modulation," J. Appl. Phys. 96, 6109-6112, (2004).
[CrossRef]

Nature

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Page-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsidri, and A. Bjarklev, "Strained silicon as a new electro-optical material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, and J. Harris "Strong quantum-confined Stark effect in germanium quantum well structures on silicon," Nature 437, 1334-1336 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

P. Yu, J. Wu, and B. Zhu "Enhanced quantum-confined Pockels effect in SiGe superlattices," Phys. Rev. B 73, 235328 (2006).
[CrossRef]

Other

D. Marris-Morini, X. Le Roux, D. Pascal, L. Vivien, E. Cassan, J. M. Fédéli, J. F. Damlencourt, D. Bouville, J. Palomo, and S. Laval, "High speed all-silicon modulation-doped optical modulator," presented at the EMRS-spring meeting, Nice, 29 mai-2 june 2006.

S. Maine, D. Marris-Morini, L. Vivien, D. Pascal, E. Cassan, and S. Laval, "Design optimisation of SiGe/Si:modulation-doped multiple quantum well modulator for high speed operation," in Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, G. C. Righini, ed., Proc SPIE 6183 (2006), 618360D1-6.
[CrossRef]

ISE software, http://www.ise.com/.

PhotonDesign software, http://www.photond.com.

G. T. Reed, and C. E. J. Png, "Silicon optical modulators," Materials Todays 40-50, (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Device structure: a highly doped P+ layer is inserted in a silicon PIN diode.

Fig. 2.
Fig. 2.

Example of experimental transmission spectra of the device recorded for 0V and - 4V.

Fig. 3.
Fig. 3.

Experimental effective index variation versus PIN bias voltage: measured effective index variation, electrical (due to hole depletion) and thermal contributions.

Fig. 4.
Fig. 4.

Experimental current/voltage characteristic of the diode.

Fig. 5.
Fig. 5.

Theoretical effective index variation versus PIN bias voltage.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 n eff ( λ ) L =
Δ n eff ( λ ) = Δ λ λ n g ( λ )
n g ( λ p ) = λ p 2 2 L Δ λ p
L π = λ 2 Δ n eff
Δ n = 8,8 . 10 22 Δ N 8,5 . 10 18 Δ P 0,8
Δ α = 8,5 . 10 18 Δ N + 6,0 . 10 18 Δ P

Metrics