Abstract

We demonstrate efficient coupling to the optical Whispering-Gallery (WG) modes of a fluidic resonator consisting of a droplet embedded in a liquid medium. Unlike previous experiments the droplet is not levitated in an optical or electrostatic trap and free space coupling is replaced by phase-matched, waveguide coupling using a fiber-taper. We have observed critical coupling to fundamental WG modes of a 600 μm diameter water droplet at 980 nm. The experimental challenges towards making, stabilizing and coupling to the droplet resonators are addressed in this paper.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
    [CrossRef]
  2. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
    [CrossRef]
  3. D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
    [CrossRef]
  4. D. Psaltis, SR Quake, CH Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006)
    [CrossRef] [PubMed]
  5. A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric sphere," Phys. Rev. Lett. 38, 1351-1354 (1977).
    [CrossRef]
  6. H. -M. Tzeng, K. F. Wall, M. B. Logng, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984).
    [CrossRef] [PubMed]
  7. R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004).
    [CrossRef]
  8. S. -X Qian, J. B. Snow, and R. K. Chang, "Coherent Raman mixing and coherent anti-stokes Raman scattering from individual micrometer-size droplets," Opt. Lett. 10, 499-501 (1985).
    [CrossRef] [PubMed]
  9. M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
    [CrossRef]
  10. H. Azzouz, L. Alkhafadiji, S. Balslev, J. Johansson, N.A. Mortensen, S. Nilsson, A. Kristensen, "Levitated droplet dye laser," Opt. Express 14, pp. 4374-4379 (2006)
    [CrossRef] [PubMed]
  11. AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
    [CrossRef]
  12. JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005).
    [CrossRef]
  13. DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
    [CrossRef]
  14. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
    [CrossRef]
  15. M. Tona, and M. Kimura, "Parallel-plate ion trap useful for optical studies of microparticles," Rev. of Sci. Instrum. 75, 2276-2279 (2004).
    [CrossRef]
  16. J. C. Night, G. Cheung, F. Jacques, and T.A. Birks, "Phase matched excitation of Whispering-Gallery mode resonances," Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef]
  17. M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
    [CrossRef] [PubMed]
  18. Note that the thickness of a liquid-liquid interface is usually characterized by an interfacial 90-10 width (the distance required for the surrounding liquid density to drop from 90% to 10% of its bulk value). Usually 90-10 width for a water-oil liquid is smaller than 1 nm and therefore the surface of a droplet in the cladding medium is extremely smooth. (see D. M. Mitrinovic et al., "X-ray reflectivity study of the water-hexane interface," J. Phys. Chem. B 13, 1779-1782, 1999)
    [CrossRef]
  19. G. M. Hale, and M. R. Querry, "Optical constants of water in the 200-nm to 200 ?m wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  20. Cargille Laboratories: Refractive index liquid Series AAA 1.3 (background liquid), and immersion liquid code OHZB n = 1.4 (optical liquid)
  21. B. E. Little, J. -P. Laine, and H. A. Haus, "Analytical theory of coupling from tapered fibers and half-blocks into microsphere resonators," J. Lightwave Technol. 17, 704-715 (1999).
    [CrossRef]
  22. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
    [CrossRef] [PubMed]
  23. C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
    [CrossRef]
  24. S. Schiller, and R. L. Byer, "High-resolution spectroscopy of whispering-gallery modes in large dielectric spheres," Opt. Lett. 16, 1138-1140 (1991).
    [CrossRef] [PubMed]
  25. V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
    [CrossRef]
  26. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein absorption," Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  27. A. M. Armani, and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
    [CrossRef] [PubMed]
  28. F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys.-Cond. Matt. 17, 705-774 (2005)
    [CrossRef]

2006 (3)

2005 (6)

F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys.-Cond. Matt. 17, 705-774 (2005)
[CrossRef]

C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
[CrossRef]

JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005).
[CrossRef]

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
[CrossRef]

2004 (4)

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

M. Tona, and M. Kimura, "Parallel-plate ion trap useful for optical studies of microparticles," Rev. of Sci. Instrum. 75, 2276-2279 (2004).
[CrossRef]

2003 (3)

AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein absorption," Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

2000 (1)

M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

1997 (1)

1993 (1)

M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
[CrossRef]

1991 (1)

1985 (1)

1984 (1)

1977 (1)

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric sphere," Phys. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

1973 (1)

Al-Assaf, E.

C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
[CrossRef]

Alkhafadiji, L.

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
[CrossRef] [PubMed]

Arnold, S.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric sphere," Phys. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

Azzouz, H.

Balslev, S.

Baret, J. C.

F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys.-Cond. Matt. 17, 705-774 (2005)
[CrossRef]

Barnes, M. D.

M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
[CrossRef]

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Birks, T.A.

Byer, R. L.

Cai, M.

M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Campbell, K.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Chang, R. K.

Chang, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Cheung, G.

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Conroy, RS

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Darhuber, AA

AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric sphere," Phys. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

Fainman, Y.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Gijs, M. A. M

C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
[CrossRef]

Gorodetsky, M. L.

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Groisman, A.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Hale, G. M.

Haus, H. A.

Hollberg, L.

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Holler, S.

Hopkins, R. J.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Ilchenko, V. S.

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Jacques, F.

Johansson, J.

Kerry, O.

M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Khoshsima, M.

Kimura, M.

M. Tona, and M. Kimura, "Parallel-plate ion trap useful for optical studies of microparticles," Rev. of Sci. Instrum. 75, 2276-2279 (2004).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
[CrossRef] [PubMed]

Kristensen, A.

Laine, J. -P.

Levy, U.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Little, B. E.

Logng, M. B.

Lotto, C.

C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
[CrossRef]

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Mayers, BT

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Mitchem, L.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Mookherjea, S.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Mortensen, N.A.

Mugele, F.

F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys.-Cond. Matt. 17, 705-774 (2005)
[CrossRef]

Ng, K. C.

M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
[CrossRef]

Night, J. C.

Nilsson, S.

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Painter, O.

M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Pang, L.

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Prentiss, MG

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Psaltis, D.

D. Psaltis, SR Quake, CH Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006)
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

Qian, S. -X

Quake, SR

D. Psaltis, SR Quake, CH Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006)
[CrossRef] [PubMed]

Querry, M. R.

Ramsey, M.

M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
[CrossRef]

Reid, J. P.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Sayer, R. M.

R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Schiller, S.

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Snow, J. B.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
[CrossRef] [PubMed]

Symes, R.

R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Teraoka, I.

Tona, M.

M. Tona, and M. Kimura, "Parallel-plate ion trap useful for optical studies of microparticles," Rev. of Sci. Instrum. 75, 2276-2279 (2004).
[CrossRef]

Troian, SM

JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005).
[CrossRef]

AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
[CrossRef]

Tzeng, H. -M.

Vahala, K. J.

A. M. Armani, and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
[CrossRef] [PubMed]

Valentino, JP

JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005).
[CrossRef]

AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
[CrossRef]

Vassiliev, V.

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Velichansky, V.

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Vezenov, DV

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Vollmer, F.

Wagner, S

JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005).
[CrossRef]

Wagner, S.

AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
[CrossRef]

Wall, K. F.

Ward, A. D.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Whitesides, G. M.

D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

Whitesides, GM

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Whitten, W. B.

M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
[CrossRef]

Wolfe, D. B.

D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
[CrossRef]

Wolfe, DB

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Yamahata, C.

C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
[CrossRef]

Yang, CH

D. Psaltis, SR Quake, CH Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006)
[CrossRef] [PubMed]

Yarovitsky, A. V.

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Anal. Chem. (1)

M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys Lett. (1)

DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005)
[CrossRef]

Appl. Phys. Lett. (3)

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004).
[CrossRef]

D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005).
[CrossRef]

JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005).
[CrossRef]

Cond. Matt. (1)

F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys.-Cond. Matt. 17, 705-774 (2005)
[CrossRef]

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003)
[CrossRef]

Microfluidics and Nanofluidics (1)

C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005)
[CrossRef]

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003)
[CrossRef] [PubMed]

D. Psaltis, SR Quake, CH Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006)
[CrossRef] [PubMed]

Opt. Commun. (1)

V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (2)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric sphere," Phys. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Rev. of Sci. Instrum. (1)

M. Tona, and M. Kimura, "Parallel-plate ion trap useful for optical studies of microparticles," Rev. of Sci. Instrum. 75, 2276-2279 (2004).
[CrossRef]

Other (2)

Note that the thickness of a liquid-liquid interface is usually characterized by an interfacial 90-10 width (the distance required for the surrounding liquid density to drop from 90% to 10% of its bulk value). Usually 90-10 width for a water-oil liquid is smaller than 1 nm and therefore the surface of a droplet in the cladding medium is extremely smooth. (see D. M. Mitrinovic et al., "X-ray reflectivity study of the water-hexane interface," J. Phys. Chem. B 13, 1779-1782, 1999)
[CrossRef]

Cargille Laboratories: Refractive index liquid Series AAA 1.3 (background liquid), and immersion liquid code OHZB n = 1.4 (optical liquid)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Calculated radiation limited quality factor at λ = 980 nm for the fundamental Whispering-Gallery resonance of a water sphere embedded in a medium with an index contrast of 0.03.

Fig. 2.
Fig. 2.

Stabilizing the droplet using a silica sphere. The adhesion force between water and silica traps the droplet. Based on experimental results if ρ0 ≈ 2× ρs (Δρ ≈× ρs) and the diameter of the droplet is equal to that of the silica sphere, the final shape is close to a perfect sphere. Inset shows the qualitative behavior of the droplet shape and size.

Fig. 3.
Fig. 3.

Calculated effective refractive index of a cylindrical dielectric waveguide made of silica in a medium with n o =1.3, at λ = 980 nm. The dashed lines indicate the near phase-matched coupling regime for a water droplet (D = 0.3 – 1 mm).

Fig. 4.
Fig. 4.

Schematic diagram of the experimental configuration

Fig. 5.
Fig. 5.

(a) A water droplet trapped on top of a silica sphere inside the background liquid. Because of the transparency of the droplet the contact margin in the front is not visible. (b) Transmission spectrum of a fiber-taper coupled to the water droplet (D = 1 mm). The TM polarized fundamental modes (l = m, q =1) are critically coupled. The measured ΔλFSR = 0.23 nm is in very good agreement with the calculated value (0.232 nm) using the effective refractive index for the TM (4227,4227,1) mode.

Fig. 6.
Fig. 6.

(a) Measured transmission spectrum of the fiber-taper coupled to a water droplet (D ≈ 1 mm) inside optical liquid (n ≈ 1.3) around λ = 980 μm. The main dip corresponds to the fundamental Whispering-Gallery resonance (l = m) and the small dips are azimuthal modes (l-m=2K, K is a nonzero integer). The resonant wavelengths of azimuthal modes are red shifted due to the positive eccentricity of the droplet (prolate form). The resonant wavelengths of these modes are separated by 0.0085 nm intervals. The dashed line is to guide the eye for the Lorentzian shape of the fundamental resonance which has a Q of 1.15×105. (b) Experimental (triangles) and calculated (dots) values of resonant wavelengths against azimuthal mode order (l-m).

Fig. 7.
Fig. 7.

A water microdroplet with a diameter of 600 μm coupled to a fiber-taper (a) Top-view and (b) Side-view. In the side-view picture the fiber-taper is not visible because the camera is focused on the great circle of the sphere.

Fig. 8.
Fig. 8.

(a) Measured optical transmission spectrum of the fiber-taper coupled to a water microdroplet (D = 600 μm) around λ = 980 nm. Due to small eccentricity the resonant wavelengths of azimuthal modes are very close and cannot be resolved. The ΔλFSR is 0.381 nm. (b) Transmission spectrum near resonance. The wavelength spacing between adjacent even azimuthal modes is about 0.0066 nm (The dashed line is to guide the eye for the Lorentzian shape of the fundamental resonance).

Fig. 9.
Fig. 9.

Normalized transmission against taper-droplet separation (coupling gap) while the fiber-taper is coupled to the fundamental WG mode (l = m) of the droplet (λ ~980 nm). The dotted line is a polynomial fit to the experimental data.

Fig. 10.
Fig. 10.

(a) Mechanical tuning of the eccentricity/diameter of a droplet resonator sandwiched between two hydrophobic surfaces. (b) Electrical tuning of the eccentricity/diameter of a droplet resonator trapped on top of a silica hemisphere (using electrowetting effect [28]).

Tables (1)

Tables Icon

Table 1. Important physical and optical (λ = 980 nm) properties of liquids used in the experiment [19,20].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 Q = 1 Q ext + 1 Q abs + 1 Q rad
Q abs = 2 π n eff ( F r α r + F m α m ) λ 0
Q ext = m π K 2
( η s α s + l R ) j l ( k n s R ) = k n s j l ( k n s R )
δ λ ec = ± Δ λ FSR ε 2 2 ( ε = a 2 b 2 a )

Metrics