Abstract

We present a compact design for an integrated interconnect based on a hybrid imaging setup combining microchannel and conventional imaging. Within this setup the conventional imaging is performed by an aluminum-coated spherical lens. The aberrations introduced by this spherical mirror to the channels of the interconnect can be compensated by channel-wise adapted microlenses located at the in- and output interfaces. These microlenses are used for collimating or refocusing the beams, respectively. Within this paper we present the design of the microlens array with individually shaped lenses referred to as chirped mircolens array (cMLA) based on numerical optimization and the use of fitting functions. Further on we focus on the fabrication of the chirped microlens arrays by laser lithography and first experimental results of coupling efficiencies of singlemode as well as multimode fibers for the realized prototypes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Sel. Areas Commun. 6, 1209–1226 (1988).
    [Crossref]
  2. A.W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
    [Crossref]
  3. F.B. McCormick, “Free space optical interconnection techniques,” Photonics in Switching, J.E. Midwinter ed., (Academic Boston, 1993).
  4. S. Sinzinger and J. Jahns, “Variations of hybrid imaging concept for optical computing applications,” Optical Computing inVol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), 183–185 (1995).
  5. J. Jahns and A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [Crossref] [PubMed]
  6. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13, 10539–10551 (2005).
    [Crossref] [PubMed]
  7. F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
    [Crossref]
  8. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
    [Crossref] [PubMed]
  9. W.B. Joyce and B.C. DeLoach, “Alignment of Gaussian Beams,” Appl. Opt. 23, (4187–4196 (1984).
    [Crossref] [PubMed]
  10. A. Yariv, “A Coupled Mode Theory for Guided-Wave Optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
    [Crossref]
  11. ZEMAX Instruction Manual (2004)
  12. J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, New York,1968).
  13. G.N. Lawrence, “Optical Modelling,” Applied Optics and Optical EngineeringVol. 11, R.R. Shannon and J.C. Wyant eds. (Academic, New York, 1992).
  14. D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
    [Crossref]
  15. M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
    [Crossref]
  16. M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).
  17. P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
    [Crossref]

2005 (2)

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13, 10539–10551 (2005).
[Crossref] [PubMed]

F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
[Crossref]

2000 (1)

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
[Crossref]

1997 (1)

1994 (1)

M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).

1991 (2)

M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
[Crossref]

A.W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[Crossref]

1990 (1)

D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
[Crossref]

1989 (1)

1988 (1)

H.S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Sel. Areas Commun. 6, 1209–1226 (1988).
[Crossref]

1984 (1)

1973 (1)

A. Yariv, “A Coupled Mode Theory for Guided-Wave Optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

Bona, G.L.

M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).

Braeuer, A.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
[Crossref]

Daly, D.

D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
[Crossref]

Dannberg, P.

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13, 10539–10551 (2005).
[Crossref] [PubMed]

F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
[Crossref]

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
[Crossref]

Davies, N.

D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
[Crossref]

DeLoach, B.C.

Duparré, J.

F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
[Crossref]

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13, 10539–10551 (2005).
[Crossref] [PubMed]

Gale, M.T.

M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).

M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
[Crossref]

Goodman, J.W.

J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, New York,1968).

Hinton, H.S.

H.S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Sel. Areas Commun. 6, 1209–1226 (1988).
[Crossref]

Huang, A.

Hutley, M.C.

D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
[Crossref]

Jahns, J.

S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[Crossref] [PubMed]

J. Jahns and A. Huang, “Planar integration of free space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[Crossref] [PubMed]

S. Sinzinger and J. Jahns, “Variations of hybrid imaging concept for optical computing applications,” Optical Computing inVol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), 183–185 (1995).

Joyce, W.B.

Kunz, R.E.

M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).

Lang, G.K.

M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
[Crossref]

Lawrence, G.N.

G.N. Lawrence, “Optical Modelling,” Applied Optics and Optical EngineeringVol. 11, R.R. Shannon and J.C. Wyant eds. (Academic, New York, 1992).

Lohmann, A.W.

A.W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[Crossref]

Mann, G.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
[Crossref]

McCormick, F.B.

F.B. McCormick, “Free space optical interconnection techniques,” Photonics in Switching, J.E. Midwinter ed., (Academic Boston, 1993).

Raynor, J.M.

M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
[Crossref]

Reimann, A.

Rossi, M.

M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).

Schreiber, P.

F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
[Crossref]

Schuetz, H.

M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
[Crossref]

Sinzinger, S.

S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[Crossref] [PubMed]

S. Sinzinger and J. Jahns, “Variations of hybrid imaging concept for optical computing applications,” Optical Computing inVol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), 183–185 (1995).

Stevens, R.F.

D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
[Crossref]

Wagner, L.

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
[Crossref]

Wippermann, F.

J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13, 10539–10551 (2005).
[Crossref] [PubMed]

F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
[Crossref]

Yariv, A.

A. Yariv, “A Coupled Mode Theory for Guided-Wave Optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

A. Yariv, “A Coupled Mode Theory for Guided-Wave Optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

H.S. Hinton, “Architectural considerations for photonic switching networks,” IEEE J. Sel. Areas Commun. 6, 1209–1226 (1988).
[Crossref]

Meas. Sci. Technol. (1)

D. Daly, R.F. Stevens, M.C. Hutley, and N. Davies, “The manufacture of microlenses by melting photo resist,” Meas. Sci. Technol. 1, 759–766 (1990).
[Crossref]

Opt. Commun. (1)

A.W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[Crossref]

Opt. Express (1)

OSA Technical Digest Series: Diffractive Optics (1)

M.T. Gale, M. Rossi, R.E. Kunz, and G.L. Bona, “Laser writing and replication of continous-relief Fresnel microlenses,” OSA Technical Digest Series: Diffractive Optics Vol. 11, 306–309 (1994).

Proc. SPIE (3)

P. Dannberg, G. Mann, L. Wagner, and A. Braeuer, “Polymer UV- molding for micro-optical systems and O/E-integration,” Proc. SPIE 4179, 137 (2000).
[Crossref]

F. Wippermann, J. Duparré, P. Schreiber, and P. Dannberg “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective,” Proc. SPIE 5962 (2005).
[Crossref]

M.T. Gale, G.K. Lang, J.M. Raynor, and H. Schuetz, “Fabrication of microoptical elements by laser beam writing in photo resist,” Proc. SPIE 1506, 65–70 (1991).
[Crossref]

Other (5)

F.B. McCormick, “Free space optical interconnection techniques,” Photonics in Switching, J.E. Midwinter ed., (Academic Boston, 1993).

S. Sinzinger and J. Jahns, “Variations of hybrid imaging concept for optical computing applications,” Optical Computing inVol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), 183–185 (1995).

ZEMAX Instruction Manual (2004)

J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, New York,1968).

G.N. Lawrence, “Optical Modelling,” Applied Optics and Optical EngineeringVol. 11, R.R. Shannon and J.C. Wyant eds. (Academic, New York, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Setup of the hybrid imaging system. F - focal length of the Fourier lens, f - focal length of the microlens.

Fig. 2.
Fig. 2.

Schematically setup of the integrated hybrid imaging system

Fig. 3. a)
Fig. 3. a)

Mismatch of the beam positions at the plane folding mirror and the output fibers caused by the spherical aberrations introduced by the spherical mirror. b) Aberration compensation using a cMLA. c) Optical path difference vs. ray height at spherical mirror (λ=1.55μm).

Fig. 4.
Fig. 4.

Optimized mathematical functions (dashed line) for the five parameters needed for the description of a single lens of the chirped MLA. Diamonds mark the optimized results for the seven calculated channels.

Fig. 5.
Fig. 5.

Schematic top view of the system and parameters needed for the calculation of the radial distance ri,j of each cell of the MLA.

Fig. 6.
Fig. 6.

Angle of rotation Θ and radial distance r for all cells of the MLA. The position of the z-axis marks the cell with index (0,0).

Fig. 7.
Fig. 7.

Decenter, focal length and conic constant for all lenses of the chirped MLA. The position of the z-axis marks the cell with index (0,0).

Fig. 8.
Fig. 8.

Calculated coupling efficiency for all channels of the system. The position of the z-axis marks the cell with index (0,0). Plotted scale reaches from 0.92 to 1.

Fig. 9.
Fig. 9.

Plotting scheme for writing the lenses. Blue areas are to be exposed when writing the coarse structure, the yellowish colored areas correspond to the structures when writing the fine structure.

Fig. 10.
Fig. 10.

Grey-scale drawing of the splitting scheme for a) the coarse structures and b) the fine structures for a detail of the array. c) detail picture of the fabricated micro lenses.

Fig. 11.
Fig. 11.

Detail of the assembled setup for lab verification.

Fig. 12.
Fig. 12.

Comparison of the fitted, ideal and measured profile for two lenses of the chirped MLA.

Fig. 13.
Fig. 13.

Plot of the height profile of the ideal and measured grating structure.

Fig. 14.
Fig. 14.

Coupling efficiency of the system as a function of the axial displacement.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η d = exp [ ( d d e ) 2 ]
η ϕ = exp [ ( ϕ ϕ e ) 2 ]
d e = 2 1 / 2 τ a · ( 1 ω 01 2 + 1 ω 02 2 ) 1 / 2 ,
Θ e = 2 3 / 2 τ a k · ( 1 ω 1 2 + 1 ω 2 2 ) 1 / 2 ,
η a = F x y W * x y dxdy 2 ∫∫F x y F * x y dxdy ·∫∫W x y W * x y dxdy
η total = η a η d η ϕ .
F = A 2 λZ ,
r i , j = { [ ( i N x 1 2 ) ·P P 2 ] 2 + [ ( j N y 1 2 ) · P + r 0 ] 2 } 1 2 ,
Θ i , j = arccos [ 1 + ( i N x 1 2 1 2 j + r 0 P ) 2 ] 1 2 .
d x i , j = d i , j · ( 1 + tan 2 Θ i , j ) 1 2 ,
d y i , j = d i , j · ( 1 + tan 2 Θ i , j ) 1 2 ,

Metrics