Abstract

This paper describes the direct write laser fabrication of a photolithography mask for prototyping of microfluidic devices in polydimethylsiloxane. An amplified femtosecond pulse laser is used to selectively remove the aluminium metal layer from the poly(methyl methacrylate) photomask substrate. The use of a femtosecond pulse laser to selectively etch a metal layer has several advantages over other conventional methods for binary photomask fabrication, namely rapid prototyping of microfluidic devices using soft lightography. Control of the energy density and defocus position of the focusing objective lens results in the etching of features with widths ranging from 2 μm to 35 μm when using an objective lens with a numerical aperture of 0.25.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Madou, Fundamentals of microfabrication: The science of miniaturisation, 2nd ed., (CRC Press, Boca Raton, 2002).
  2. S. Rizvi, Handbook of photomask manufacturing technology, (CRC Press, Boca Raton, 2005).
    [CrossRef]
  3. S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, (SPIE Press, Bellingham, 2006).
  4. D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
    [CrossRef] [PubMed]
  5. D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
    [CrossRef]
  6. D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).
  7. D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003).
    [CrossRef] [PubMed]
  8. D. Day and M. Gu, "Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses," Opt. Express 13, 5939-5946 (2005).
    [CrossRef] [PubMed]
  9. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
    [CrossRef]
  10. S. K. Sia and G. Whitesides, "Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies," Electrophoresis 24, 3563-3576 (2003).
    [CrossRef]
  11. D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
    [CrossRef]
  12. C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
    [CrossRef]
  13. M. S. Giridhar, K. Seong, A. Shulzgen, P. Khulbe, N. Peyghambarian and M. Mansuripur, "Femtosecond pulsed laser micromachining of glass substrates with applications to microfluidic devices," Appl. Opt. 43, 4584-4589 (2004).
    [CrossRef] [PubMed]
  14. I. H. Chowdhury, X. Xu and A. M. Weiner, "Ultrafast double pulse ablation of fused silica," Appl. Phys. Lett. 86, 151110 (2005).
    [CrossRef]
  15. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  16. D. Day and M. Gu, "Formation of voids in doped polymethylmethacrylate polymer," Appl. Phys. Lett. 80, 2404-2406 (2002).
    [CrossRef]
  17. M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
    [CrossRef]
  18. M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
    [CrossRef]
  19. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii and Y. Jiang, "Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses," Opt. Lett. 26, 1912-1914 (2001).
    [CrossRef]
  20. K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
    [CrossRef]
  21. K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002).
    [CrossRef]
  22. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2005).
    [CrossRef]

2005 (3)

2004 (2)

M. S. Giridhar, K. Seong, A. Shulzgen, P. Khulbe, N. Peyghambarian and M. Mansuripur, "Femtosecond pulsed laser micromachining of glass substrates with applications to microfluidic devices," Appl. Opt. 43, 4584-4589 (2004).
[CrossRef] [PubMed]

C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
[CrossRef]

2003 (6)

S. K. Sia and G. Whitesides, "Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies," Electrophoresis 24, 3563-3576 (2003).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003).
[CrossRef] [PubMed]

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

2002 (3)

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002).
[CrossRef]

D. Day and M. Gu, "Formation of voids in doped polymethylmethacrylate polymer," Appl. Phys. Lett. 80, 2404-2406 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

1999 (1)

D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

1996 (1)

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

Aoki, N.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Ashcom, J. B.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

Brittain, S. T.

D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

Callan, J. P.

Cheng, Y.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Chiu, D.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

Cho, B.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

Chowdhury, I. H.

I. H. Chowdhury, X. Xu and A. M. Weiner, "Ultrafast double pulse ablation of fused silica," Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

Day, D.

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Finlay, R. J.

Giridhar, M. S.

Glezer, E. N.

Gu, M.

D. Day and M. Gu, "Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses," Opt. Express 13, 5939-5946 (2005).
[CrossRef] [PubMed]

M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

D. Day and M. Gu, "Formation of voids in doped polymethylmethacrylate polymer," Appl. Phys. Lett. 80, 2404-2406 (2002).
[CrossRef]

Helvajian, H.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Her, T. H.

Huang, L.

Hwang, J. C.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

Itoh, K.

Jamison, A. O.

C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
[CrossRef]

Jiang, Y.

Kamotani, Y.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

Kawachi, M.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Khulbe, P.

Kuroda, D.

Lewis, J. A.

D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003).
[CrossRef] [PubMed]

Li, Y.

Lim, D.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

Lim, L. E.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002).
[CrossRef]

Mansuripur, M.

Masuda, M.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Mazumder, J.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

Mazur, E.

C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
[CrossRef] [PubMed]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Midorikawa, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Milosavljevic, M.

Ngoi, B. K.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Nishii, J.

Peyghambarian, N.

Schaffer, C. B.

C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

Schueller, O. J.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Seong, K.

Shihoyama, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Shulzgen, A.

Sia, S. K.

S. K. Sia and G. Whitesides, "Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies," Electrophoresis 24, 3563-3576 (2003).
[CrossRef]

Sivakumar, N. R.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Sowa, S.

Stanley, P.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002).
[CrossRef]

Straub, M.

M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

Sugiola, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Takayama, S.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

Tamaki, T.

Tan, B.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Therriault, D.

D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003).
[CrossRef] [PubMed]

Toyoda, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

Venkatakrishman, K.

K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002).
[CrossRef]

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Ventura, M.

M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

Watanabe, W.

Weiner, A. M.

I. H. Chowdhury, X. Xu and A. M. Weiner, "Ultrafast double pulse ablation of fused silica," Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

White, S. R.

D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003).
[CrossRef] [PubMed]

Whitesides, G.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

S. K. Sia and G. Whitesides, "Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies," Electrophoresis 24, 3563-3576 (2003).
[CrossRef]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Wolfe, D. B.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

Xu, X.

I. H. Chowdhury, X. Xu and A. M. Weiner, "Ultrafast double pulse ablation of fused silica," Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

Yamada, K.

Adv. Mater. (1)

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur and G. Whitesides, "Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser," Adv. Mater. 15, 62-65 (2003).
[CrossRef]

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller and G. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethyl siloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (2)

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian and K. Midorikawa, "3-D microstructuring inside photosensitive glass by femtosecond laser excitation," Appl. Phys. A 76, 857-860 (2003).
[CrossRef]

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

M. Ventura, M. Straub and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys. Lett. 82, 1649-1651 (2003).
[CrossRef]

I. H. Chowdhury, X. Xu and A. M. Weiner, "Ultrafast double pulse ablation of fused silica," Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

C. B. Schaffer, A. O. Jamison and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
[CrossRef]

D. Day and M. Gu, "Formation of voids in doped polymethylmethacrylate polymer," Appl. Phys. Lett. 80, 2404-2406 (2002).
[CrossRef]

Electrophoresis (2)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller and G. Whitesides, "Fabrication of microfluidic systems in poly(dimethyl siloxane)," Electrophoresis 21, 27-40 (2000).
[CrossRef]

S. K. Sia and G. Whitesides, "Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies," Electrophoresis 24, 3563-3576 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

D. C. Duffy, O. J. Schueller, S. T. Brittain and G. Whitesides, "Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow," J. Micromech. Microeng. 9, 211-217 (1999).
[CrossRef]

K. Venkatakrishman, P. Stanley and L. E. Lim, "Femtosecond laser ablation of thin films for the fabrication of binary photomasks," J. Micromech. Microeng. 12, 775-779 (2002).
[CrossRef]

Lab Chip (1)

D. Lim, Y. Kamotani, B. Cho, J. Mazumder and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method," Lab Chip 3, 318-323 (2003).

Nat. Mater. (1)

D. Therriault, S. R. White and J. A. Lewis, "Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly," Nat. Mater. 2, 265-271 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (3)

M. J. Madou, Fundamentals of microfabrication: The science of miniaturisation, 2nd ed., (CRC Press, Boca Raton, 2002).

S. Rizvi, Handbook of photomask manufacturing technology, (CRC Press, Boca Raton, 2005).
[CrossRef]

S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, (SPIE Press, Bellingham, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic illustration of the optical setup. (b). An illustration showing the focused femtosecond laser beam and its focus position relative to the metal layer. The beam waist in the focus is represented by w0 and the Rayleigh range is indicated by zR.

Fig. 2.
Fig. 2.

SEM image of a series of lines fabricated at different energies. The top four lines are fabricated with a fluence (5 J/cm2) above the threshold for ionising the PMMA substrate while the bottom three lines are fabricated with a fluence (0.7 J/cm2) where only the Al layer is ionised.

Fig. 3.
Fig. 3.

Schematic diagram representing the defocus position of the objective lens and the limit of the Rayleigh range with respect to the Al layer. (a) the objective is focused on the metal layer, (b) the objective lens is defocused by 45 μm and (c) the objective lens is defocused by 75 μm. The Rayleigh range is indicated by the hashed region. (d) illustrates the theoretical and experimental values for the width of the etched line as a function of defocus position.

Fig. 4.
Fig. 4.

Fabrication of a photomask using defocusing. SEM images of a series of lines fabricated at different objective lens defocus positions, (a) Δz = 0 μm, (b) Δz = 45 μm and (c) Δz = 75 μm. (d) a sealed y-junction microfluidic device. The length of the microfluidic channels from the inlets to the outlet is 13.5 mm and the channel width and depth are both 100 μm. (e) a two-colour fluorescence image showing the laminar flow produced in the y-junction microfluidic device.

Metrics