Abstract

This paper describes the direct write laser fabrication of a photolithography mask for prototyping of microfluidic devices in polydimethylsiloxane. An amplified femtosecond pulse laser is used to selectively remove the aluminium metal layer from the poly(methyl methacrylate) photomask substrate. The use of a femtosecond pulse laser to selectively etch a metal layer has several advantages over other conventional methods for binary photomask fabrication, namely rapid prototyping of microfluidic devices using soft lightography. Control of the energy density and defocus position of the focusing objective lens results in the etching of features with widths ranging from 2 μm to 35 μm when using an objective lens with a numerical aperture of 0.25.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Madou, Fundamentals of microfabrication: The science of miniaturisation, 2nd ed., (CRC Press, Boca Raton, 2002).
  2. S. Rizvi, Handbook of photomask manufacturing technology, (CRC Press, Boca Raton, 2005).
    [CrossRef]
  3. S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, (SPIE Press, Bellingham, 2006).
  4. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
    [CrossRef] [PubMed]
  5. D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
    [CrossRef]
  6. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).
  7. D. Therriault, S. R. White, and J. A. Lewis, “Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly,” Nat. Mater. 2, 265–271 (2003).
    [CrossRef] [PubMed]
  8. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
    [CrossRef] [PubMed]
  9. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
    [CrossRef]
  10. S. K. Sia and G. Whitesides, “Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies,” Electroph. 24, 3563–3576 (2003).
    [CrossRef]
  11. D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
    [CrossRef]
  12. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
    [CrossRef]
  13. M. S. Giridhar, K. Seong, A. Shulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with applications to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004).
    [CrossRef] [PubMed]
  14. I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
    [CrossRef]
  15. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
    [CrossRef] [PubMed]
  16. D. Day and M. Gu, “Formation of voids in doped polymethylmethacrylate polymer,” Appl. Phys. Lett. 80, 2404–2406 (2002).
    [CrossRef]
  17. M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
    [CrossRef]
  18. M. Ventura, M. Straub, and M. Gu, “Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,” Appl. Phys. Lett. 82, 1649–1651 (2003).
    [CrossRef]
  19. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001).
    [CrossRef]
  20. K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
    [CrossRef]
  21. K. Venkatakrishman, P. Stanley, and L. E. Lim, “Femtosecond laser ablation of thin films for the fabrication of binary photomasks,” J. Micromech. Microeng. 12, 775–779 (2002).
    [CrossRef]
  22. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2005).
    [CrossRef]

2005 (3)

2004 (2)

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

M. S. Giridhar, K. Seong, A. Shulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with applications to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004).
[CrossRef] [PubMed]

2003 (6)

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

M. Ventura, M. Straub, and M. Gu, “Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,” Appl. Phys. Lett. 82, 1649–1651 (2003).
[CrossRef]

S. K. Sia and G. Whitesides, “Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies,” Electroph. 24, 3563–3576 (2003).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

D. Therriault, S. R. White, and J. A. Lewis, “Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly,” Nat. Mater. 2, 265–271 (2003).
[CrossRef] [PubMed]

2002 (3)

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

K. Venkatakrishman, P. Stanley, and L. E. Lim, “Femtosecond laser ablation of thin films for the fabrication of binary photomasks,” J. Micromech. Microeng. 12, 775–779 (2002).
[CrossRef]

D. Day and M. Gu, “Formation of voids in doped polymethylmethacrylate polymer,” Appl. Phys. Lett. 80, 2404–2406 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

1999 (1)

D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
[CrossRef]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

1996 (1)

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

Aoki, N.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Ashcom, J. B.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Brittain, S. T.

D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
[CrossRef]

Callan, J. P.

Cheng, Y.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Chiu, D.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

Cho, B.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

Chowdhury, I. H.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

Day, D.

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Finlay, R. J.

Giridhar, M. S.

Glezer, E. N.

Gu, M.

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
[CrossRef] [PubMed]

M. Ventura, M. Straub, and M. Gu, “Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,” Appl. Phys. Lett. 82, 1649–1651 (2003).
[CrossRef]

D. Day and M. Gu, “Formation of voids in doped polymethylmethacrylate polymer,” Appl. Phys. Lett. 80, 2404–2406 (2002).
[CrossRef]

Helvajian, H.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Her, T. H.

Huang, L.

Hwang, J. C.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Itoh, K.

Jamison, A. O.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

Jiang, Y.

Kamotani, Y.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

Kawachi, M.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Khulbe, P.

Kuroda, D.

Lewis, J. A.

D. Therriault, S. R. White, and J. A. Lewis, “Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly,” Nat. Mater. 2, 265–271 (2003).
[CrossRef] [PubMed]

Li, Y.

Lim, D.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

Lim, L. E.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

K. Venkatakrishman, P. Stanley, and L. E. Lim, “Femtosecond laser ablation of thin films for the fabrication of binary photomasks,” J. Micromech. Microeng. 12, 775–779 (2002).
[CrossRef]

Madou, M. J.

M. J. Madou, Fundamentals of microfabrication: The science of miniaturisation, 2nd ed., (CRC Press, Boca Raton, 2002).

Mansuripur, M.

Masuda, M.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Mazumder, J.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

Mazur, E.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef] [PubMed]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Midorikawa, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Milosavljevic, M.

Ngoi, B. K.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

Nishii, J.

Peyghambarian, N.

Rizvi, S.

S. Rizvi, Handbook of photomask manufacturing technology, (CRC Press, Boca Raton, 2005).
[CrossRef]

Saliterman, S.

S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, (SPIE Press, Bellingham, 2006).

Schaffer, C. B.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Schueller, O. J.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Seong, K.

Shihoyama, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Shulzgen, A.

Sia, S. K.

S. K. Sia and G. Whitesides, “Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies,” Electroph. 24, 3563–3576 (2003).
[CrossRef]

Sivakumar, N. R.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

Sowa, S.

Stanley, P.

K. Venkatakrishman, P. Stanley, and L. E. Lim, “Femtosecond laser ablation of thin films for the fabrication of binary photomasks,” J. Micromech. Microeng. 12, 775–779 (2002).
[CrossRef]

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

Straub, M.

M. Ventura, M. Straub, and M. Gu, “Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,” Appl. Phys. Lett. 82, 1649–1651 (2003).
[CrossRef]

Sugiola, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Takayama, S.

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

Tamaki, T.

Tan, B.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

Therriault, D.

D. Therriault, S. R. White, and J. A. Lewis, “Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly,” Nat. Mater. 2, 265–271 (2003).
[CrossRef] [PubMed]

Toyoda, K.

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

Venkatakrishman, K.

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

K. Venkatakrishman, P. Stanley, and L. E. Lim, “Femtosecond laser ablation of thin films for the fabrication of binary photomasks,” J. Micromech. Microeng. 12, 775–779 (2002).
[CrossRef]

Ventura, M.

M. Ventura, M. Straub, and M. Gu, “Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,” Appl. Phys. Lett. 82, 1649–1651 (2003).
[CrossRef]

Watanabe, W.

Weiner, A. M.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

White, S. R.

D. Therriault, S. R. White, and J. A. Lewis, “Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly,” Nat. Mater. 2, 265–271 (2003).
[CrossRef] [PubMed]

Whitesides, G.

S. K. Sia and G. Whitesides, “Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies,” Electroph. 24, 3563–3576 (2003).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Wolfe, D. B.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

Xu, X.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

Yamada, K.

Adv. Mater. (1)

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. Whitesides, “Customization of poly(dimethyl siloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethyl siloxane),” Anal. Chem. 70, 4974–4984 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (2)

M. Masuda, K. Sugiola, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003).
[CrossRef]

K. Venkatakrishman, B. K. Ngoi, P. Stanley, L. E. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys. A 74, 493–496 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

M. Ventura, M. Straub, and M. Gu, “Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,” Appl. Phys. Lett. 82, 1649–1651 (2003).
[CrossRef]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[CrossRef]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[CrossRef]

D. Day and M. Gu, “Formation of voids in doped polymethylmethacrylate polymer,” Appl. Phys. Lett. 80, 2404–2406 (2002).
[CrossRef]

Electroph. (2)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. Chiu, H. Wu, O. J. Schueller, and G. Whitesides, “Fabrication of microfluidic systems in poly(dimethyl siloxane),” Electroph. 21, 27–40 (2000).
[CrossRef]

S. K. Sia and G. Whitesides, “Microfluidic devices fabricated in poly(dimethyl siloxane) for biological studies,” Electroph. 24, 3563–3576 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

D. C. Duffy, O. J. Schueller, S. T. Brittain, and G. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their acitationby electro-osmotic flow,” J. Micromech. Microeng. 9, 211–217 (1999).
[CrossRef]

K. Venkatakrishman, P. Stanley, and L. E. Lim, “Femtosecond laser ablation of thin films for the fabrication of binary photomasks,” J. Micromech. Microeng. 12, 775–779 (2002).
[CrossRef]

Nat. Mater. (1)

D. Therriault, S. R. White, and J. A. Lewis, “Cahotic mixing in three-dimensional microlvascular networks fabricated by direct-write assembly,” Nat. Mater. 2, 265–271 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (4)

D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip  3, 318–323 (2003).

M. J. Madou, Fundamentals of microfabrication: The science of miniaturisation, 2nd ed., (CRC Press, Boca Raton, 2002).

S. Rizvi, Handbook of photomask manufacturing technology, (CRC Press, Boca Raton, 2005).
[CrossRef]

S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, (SPIE Press, Bellingham, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic illustration of the optical setup. (b). An illustration showing the focused femtosecond laser beam and its focus position relative to the metal layer. The beam waist in the focus is represented by w0 and the Rayleigh range is indicated by zR.

Fig. 2.
Fig. 2.

SEM image of a series of lines fabricated at different energies. The top four lines are fabricated with a fluence (5 J/cm2) above the threshold for ionising the PMMA substrate while the bottom three lines are fabricated with a fluence (0.7 J/cm2) where only the Al layer is ionised.

Fig. 3.
Fig. 3.

Schematic diagram representing the defocus position of the objective lens and the limit of the Rayleigh range with respect to the Al layer. (a) the objective is focused on the metal layer, (b) the objective lens is defocused by 45 μm and (c) the objective lens is defocused by 75 μm. The Rayleigh range is indicated by the hashed region. (d) illustrates the theoretical and experimental values for the width of the etched line as a function of defocus position.

Fig. 4.
Fig. 4.

Fabrication of a photomask using defocusing. SEM images of a series of lines fabricated at different objective lens defocus positions, (a) Δz = 0 μm, (b) Δz = 45 μm and (c) Δz = 75 μm. (d) a sealed y-junction microfluidic device. The length of the microfluidic channels from the inlets to the outlet is 13.5 mm and the channel width and depth are both 100 μm. (e) a two-colour fluorescence image showing the laminar flow produced in the y-junction microfluidic device.

Metrics