Abstract

A method to probe the guiding characteristics of waveguides formed in real-time is proposed and evaluated. It is based on the analysis of the time dependent light distribution observed at the exit face of the waveguide while progressively altering its index profile and probed by a large diameter optical beam. A beam propagation method is used to model the observed dynamics. The technique is applied to retrieve the properties of soliton-induced waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, "Ultraviolet photobleaching process of azo dye doped polymer and silica films fir fabrication of nonlinear optical waveguides," Appl. Opt. 37, 1068 (1999).
    [CrossRef]
  2. J. Kang, E. Kim, and J. Kim, "All-optical switch and modulator using photochromic dye doped polymer waveguides," Opt. Mater. 21, 543 (2002).
    [CrossRef]
  3. H.  Sun and S.  Kawata, "Two-Photon Photopolymerization and 3D Lithographic Microfabrication" Adv. Polym. Sci. 170, 169 (2004).
  4. M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
    [CrossRef]
  5. A. M. Ljungström and T. M. Monro, "Exploration of self-writing and photosensitivity in ion-exchanged waveguides," J. Opt. Soc. Am. B 20, 1317 (2003).
    [CrossRef]
  6. S. Ramachandran and S. G. Bishop,"Photoinduced integrated-optics devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260 (2005).
    [CrossRef]
  7. M. F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 143091-3101 (1997).
    [CrossRef]
  8. M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
    [CrossRef]
  9. E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188 (2002).
    [CrossRef]
  10. L. Thylen, "The beam propagation method: an analysis of its applicability," Opt. Quantum Electron. 15, 433 (1982).
    [CrossRef]
  11. D. N. Christodoulides, M. I. Carvalho, "Bright, dark, and gray spatial soliton states in photorefractive media," J. Opt. Soc. Am. B 12, 1628-1633 (1995).
    [CrossRef]
  12. N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866 (1996).
    [CrossRef]
  13. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994).
    [CrossRef] [PubMed]
  14. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
    [CrossRef] [PubMed]
  15. M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
    [CrossRef] [PubMed]
  16. G. Couton, H. Maillotte and M. Chauvet, "Self-formation of multiple spatial photovoltaic solitons," J. Opt. Soc. Am. B 6, S223-S230 (2004).
    [CrossRef]
  17. P. Yeh, "Introduction to photorefractive nonlinear optics," J. Goodman ed., (Wiley series in Pure and Applied Optics, 1993), p 29.
  18. Y. H. Hong, P. Xie, J. H. Dai, Y. Zhu, H. G. Yang, and H. J. Zhang, "Fanning effects in photorefractive crystals," Opt. Lett. 18, 772 (1993).
    [CrossRef] [PubMed]

2005

S. Ramachandran and S. G. Bishop,"Photoinduced integrated-optics devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260 (2005).
[CrossRef]

2004

H.  Sun and S.  Kawata, "Two-Photon Photopolymerization and 3D Lithographic Microfabrication" Adv. Polym. Sci. 170, 169 (2004).

G. Couton, H. Maillotte and M. Chauvet, "Self-formation of multiple spatial photovoltaic solitons," J. Opt. Soc. Am. B 6, S223-S230 (2004).
[CrossRef]

2003

2002

E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188 (2002).
[CrossRef]

J. Kang, E. Kim, and J. Kim, "All-optical switch and modulator using photochromic dye doped polymer waveguides," Opt. Mater. 21, 543 (2002).
[CrossRef]

2000

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

1999

1997

M. F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 143091-3101 (1997).
[CrossRef]

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

1996

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866 (1996).
[CrossRef]

1995

1994

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

1993

1982

L. Thylen, "The beam propagation method: an analysis of its applicability," Opt. Quantum Electron. 15, 433 (1982).
[CrossRef]

Agranat, A. J.

Assanto, G.

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Bishop, S. G.

S. Ramachandran and S. G. Bishop,"Photoinduced integrated-optics devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260 (2005).
[CrossRef]

Bliss, D. F.

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

Bryant, G.

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

Carvalho, M. I.

Chauvet, M.

G. Couton, H. Maillotte and M. Chauvet, "Self-formation of multiple spatial photovoltaic solitons," J. Opt. Soc. Am. B 6, S223-S230 (2004).
[CrossRef]

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

Chen, Z.

Christodoulides, D. N.

Couton, G.

G. Couton, H. Maillotte and M. Chauvet, "Self-formation of multiple spatial photovoltaic solitons," J. Opt. Soc. Am. B 6, S223-S230 (2004).
[CrossRef]

Crosignani, B.

Dai, J. H.

De Luca, A.

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

De Rossi, A

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

DelRe, E.

Di Porto, P.

Duree, G.

Feigelson, R. S.

Fressengeas, N.

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866 (1996).
[CrossRef]

Hawkins, S.

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

Hirota, K.

Hong, Y. H.

Kang, J.

J. Kang, E. Kim, and J. Kim, "All-optical switch and modulator using photochromic dye doped polymer waveguides," Opt. Mater. 21, 543 (2002).
[CrossRef]

Kawata, S.

H.  Sun and S.  Kawata, "Two-Photon Photopolymerization and 3D Lithographic Microfabrication" Adv. Polym. Sci. 170, 169 (2004).

Khoo, I. C.

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Kim, E.

J. Kang, E. Kim, and J. Kim, "All-optical switch and modulator using photochromic dye doped polymer waveguides," Opt. Mater. 21, 543 (2002).
[CrossRef]

Kim, J.

J. Kang, E. Kim, and J. Kim, "All-optical switch and modulator using photochromic dye doped polymer waveguides," Opt. Mater. 21, 543 (2002).
[CrossRef]

Kugel, G.

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866 (1996).
[CrossRef]

Lee, H.

Ljungström, A. M.

Maillotte, H.

G. Couton, H. Maillotte and M. Chauvet, "Self-formation of multiple spatial photovoltaic solitons," J. Opt. Soc. Am. B 6, S223-S230 (2004).
[CrossRef]

Maufoy, J.

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866 (1996).
[CrossRef]

Mitchell, M.

Monro, T. M.

Morin, M.

Nakanishi, M.

Okamoto, N.

Palange, E.

Peccianti, M.

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Ramachandran, S.

S. Ramachandran and S. G. Bishop,"Photoinduced integrated-optics devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260 (2005).
[CrossRef]

Salamo, G.

Salamo, G. J.

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

Segev, M.

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

M. F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 143091-3101 (1997).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

Sharp, E.

Shih, M. F.

Sugihara, O.

Sun, H.

H.  Sun and S.  Kawata, "Two-Photon Photopolymerization and 3D Lithographic Microfabrication" Adv. Polym. Sci. 170, 169 (2004).

Thylen, L.

L. Thylen, "The beam propagation method: an analysis of its applicability," Opt. Quantum Electron. 15, 433 (1982).
[CrossRef]

Umeton, C.

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Valley, G. C.

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Wilde, J.

Xie, P.

Yang, H. G.

Yariv, A.

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Zhang, H. J.

Zhu, Y.

Adv. Polym. Sci.

H.  Sun and S.  Kawata, "Two-Photon Photopolymerization and 3D Lithographic Microfabrication" Adv. Polym. Sci. 170, 169 (2004).

Appl. Opt.

Appl. Phys. Lett.

M. Peccianti, A De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

M. Chauvet, S. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, "Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths," Appl. Phys. Lett. 70, 2499 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Ramachandran and S. G. Bishop,"Photoinduced integrated-optics devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Mater.

J. Kang, E. Kim, and J. Kim, "All-optical switch and modulator using photochromic dye doped polymer waveguides," Opt. Mater. 21, 543 (2002).
[CrossRef]

Opt. Quantum Electron.

L. Thylen, "The beam propagation method: an analysis of its applicability," Opt. Quantum Electron. 15, 433 (1982).
[CrossRef]

Phys. Rev. E

N. Fressengeas, J. Maufoy, and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866 (1996).
[CrossRef]

Phys. Rev. Lett.

M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211 (1994).
[CrossRef] [PubMed]

Other

P. Yeh, "Introduction to photorefractive nonlinear optics," J. Goodman ed., (Wiley series in Pure and Applied Optics, 1993), p 29.

Supplementary Material (6)

» Media 1: MOV (1389 KB)     
» Media 2: MOV (640 KB)     
» Media 3: MOV (548 KB)     
» Media 4: MOV (965 KB)     
» Media 5: MOV (2204 KB)     
» Media 6: MOV (1325 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Observed light distribution at the exit face of a decaying waveguide initially formed by a quasi-steady-state soliton in the initial stage (a) and at two subsequent characteristic times (b, c). Movie of the entire process corresponding to 40min observation is attached (size : 1.35 Mb).

Fig. 2.
Fig. 2.

Calculated dynamic of light distribution at the exit face of a decaying soliton-induced in the initial stage (a) and at two subsequent characteristic times (b, c). Movie of the entire process is attached (size : 640 kB).

Fig. 3.
Fig. 3.

Calculated dynamic of light distribution at the exit face of a decaying waveguide initially created by a partially formed soliton in the initial stage (a) and at two subsequent characteristic times (b, c). Movie of the entire process is attached (size : 548 kb).

Fig. 4.
Fig. 4.

Observed light distribution at the exit face of a decaying waveguide initially created by a partially formed soliton in the initial stage (a) and at two subsequent characteristic times (b, c). Movie of the entire process corresponding to 20min observation is attached (size : 965 kb).

Fig. 5.
Fig. 5.

Observed light distribution at the exit face of a decaying waveguide initially created by a quasi-steady-state soliton and probed by an extraordinary polarized beam, in the initial stage (a) and at two subsequent characteristic times (b, c). Movie of the entire process corresponding to 28min observation is attached (2.2 MB).

Fig. 6.
Fig. 6.

Calculated dynamic of light distribution at the exit face of a decaying waveguide initially created by quasi-steady-state soliton and probe by a extraordinary polarized beam in the initial stage (a) and at two subsequent characteristic times (b, c). Movie of the entire process is attached (1.3 MB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x ) = 0.5 n 0 3 r eff E 0 I ( x ) + I d ( I d + I ( x ) ) exp ( I ( x ) I d T d t )

Metrics