Abstract

Slow & fast light with null amplification or loss of a light signal is experimentally demonstrated. This novel method for producing zero-gain slow & fast light takes advantage of the great flexibility of stimulated Brillouin scattering in optical fibers to generate synthesized gain spectra. Generation of optical delays and advancements with minor amplitude change is realized through the superposition of gain and loss profiles showing very different spectral widths, resulting in a synthesized spectral profile identical to an ideal electromagnetically-induced transparency.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. Gonzalez Herráez and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
    [CrossRef] [PubMed]
  3. M. Gonzalez Herráez, K. Y. Song and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  4. J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  5. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  6. K. Y. Song, M. Gonzalez Herráez and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005).
    [CrossRef] [PubMed]
  7. M. Gonzalez Herráez, K. Y. Song and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2005).
    [CrossRef]
  8. Z. Zhu, A. M. C. Dawes, L. Zhang, A. E. Willner and D. J. Gauthier, "12-GHz-bandwidth SBS slow light in Optical Fibers," OFC Tech. Digest (2006), postdeadline paper 1.
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a Ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  10. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
    [CrossRef] [PubMed]
  11. L. Thévenaz, K. Y. Song and M. Gonzalez Herráez, "Time biasing due to the slow-light effect in distributed fiber-optic Brillouin sensors," Opt. Lett. 31, 715-7172006.
    [CrossRef] [PubMed]
  12. M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-5901994.
    [CrossRef]

2006 (1)

2005 (7)

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a Ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

1995 (1)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

1994 (1)

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-5901994.
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a Ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boot, A. J.

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-5901994.
[CrossRef]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a Ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Dahan, D.

Eisenstein, G.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

Gonzalez Herráez, M.

Harris, S. E.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a Ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Okawachi, Y.

J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Thévenaz, L.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-5901994.
[CrossRef]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Gonzalez Herráez, K. Y. Song and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

J. Lightwave Technol. (1)

M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-5901994.
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an Optical Fiber," Phys. Rev. Lett. 94153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a Ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically induced transparency: propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Other (1)

Z. Zhu, A. M. C. Dawes, L. Zhang, A. E. Willner and D. J. Gauthier, "12-GHz-bandwidth SBS slow light in Optical Fibers," OFC Tech. Digest (2006), postdeadline paper 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of the experimental configuration to generate zero-gain spectral resonances where two distinct optical pumps were used to produce Brillouin gain and loss, respectively.

Fig.2.
Fig.2.

Experimental setup to realize zero-gain slow light via optical fibers, by spectrally superposing a gain spectrum over a loss spectrum, generated from distinct sources showing different linewidths. VOA: variable attenuator; BPF: band-pass filter; FBG: fiber Bragg grating; EDFA: Erbium-doped fiber amplifier.

Fig.3.
Fig.3.

Variation of the amplitude of the probe signal as a function of frequency after propagation through a 2 km fiber, showing the achievement of a well-compensated SBS gain/loss profile.

Fig.4.
Fig.4.

Time traces of the probe pulses after propagation in a fiber with a zero-gain profile for different Pump 1 powers, showing a clear delay and a minor amplitude change. Traces are non-normalized and measured in unmodified experimental conditions. Arrows indicate the pulses peak position.

Fig.5.
Fig.5.

Delays and amplitudes for a 1 MHz sine modulated signal as a function of Pump 1 power in a zero-gain slow light configuration. Power of Pump 2 is 12 times larger than power of Pump 1.

Fig.6.
Fig.6.

Advancements and amplitudes for a 1 MHz sine modulated signal as a function of pump 1 power in a zero-gain fast light configuration. Power of Pump 2 is 8 times larger than power of Pump 1. The insert shows the measured SBS gain/loss profile in this configuration.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = g o I p L eff and T = G 2 π Δ ν
G net = G 1 G 2 and T net = G 1 2 π Δ ν 1 G 2 2 π Δ ν 2
G net = 0 and T net = G 1,2 2 π ( 1 Δ ν 1 1 Δ ν 2 )

Metrics