Abstract

A nanoparticle undergoing light-induced transformations between structural phases with different optical properties is an inheritably bistable structure and this bistability can be used to create a resonator-free optical memory element, operating at very low power levels. We experimentally demonstrate this memory functionality using a film of gallium nanoparticles, and we present a method for differentially accessing the logic state of the memory using a modulated optical probe beam.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cross-wavelength all-optical switching using nonlinearity of liquefying gallium

V. Albanis, S. Dhanjal, N.I. Zheludev, P. Petropoulos, and D.J. Richardson
Opt. Express 5(8) 157-162 (1999)

Light-induced metallization in laser-deposited gallium films

Kevin F. MacDonald, Vassili A. Fedotov, Robert W. Eason, Nikolay I. Zheludev, Andrei V. Rode, Barry Luther-Davies, and Vladimir I. Emel’yanov
J. Opt. Soc. Am. B 18(3) 331-334 (2001)

Ultrafast and low-power crystallization in Ge1Sb2Te4 and Ge1Sb4Te7 thin films using femtosecond laser pulses

Smriti Sahu, Rituraj Sharma, K. V. Adarsh, and Anbarasu Manivannan
Appl. Opt. 57(2) 178-184 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
    [Crossref]
  2. S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
    [Crossref] [PubMed]
  3. B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
    [Crossref] [PubMed]
  4. R. S. Berry and B. M. Smirnov, “Phase stability of solid clusters,” J. Chem. Phys. 113(2), 728–737 (2000).
    [Crossref]
  5. A. S. Shirinyan and M. Wautelet, “Phase separation in nanoparticles,” Nanotechnology 15, 1720–1731 (2004).
    [Crossref]
  6. M. Wautelet, “Phase stability of electronically excited Si nanoparticles,” J. Phys.: Condens. Matter 16, L163–L166 (2004).
    [Crossref]
  7. K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
    [Crossref]
  8. A. Defrain, “États métastables du gallium, surfusion et polymorphisme,” J. Chim. Phys. 74, 851–862 (1977).

2006 (1)

K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
[Crossref]

2005 (1)

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
[Crossref] [PubMed]

2004 (3)

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
[Crossref] [PubMed]

A. S. Shirinyan and M. Wautelet, “Phase separation in nanoparticles,” Nanotechnology 15, 1720–1731 (2004).
[Crossref]

M. Wautelet, “Phase stability of electronically excited Si nanoparticles,” J. Phys.: Condens. Matter 16, L163–L166 (2004).
[Crossref]

2002 (1)

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

2000 (1)

R. S. Berry and B. M. Smirnov, “Phase stability of solid clusters,” J. Chem. Phys. 113(2), 728–737 (2000).
[Crossref]

1977 (1)

A. Defrain, “États métastables du gallium, surfusion et polymorphisme,” J. Chim. Phys. 74, 851–862 (1977).

Bashevoy, M. V.

K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
[Crossref]

Berry, R. S.

R. S. Berry and B. M. Smirnov, “Phase stability of solid clusters,” J. Chem. Phys. 113(2), 728–737 (2000).
[Crossref]

Brocklesby, W. S.

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Defrain, A.

A. Defrain, “États métastables du gallium, surfusion et polymorphisme,” J. Chim. Phys. 74, 851–862 (1977).

Emel’yanov, V. I.

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Fedotov, V. A.

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
[Crossref] [PubMed]

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Knize, R. J.

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
[Crossref] [PubMed]

MacDonald, K. F.

K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
[Crossref] [PubMed]

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
[Crossref] [PubMed]

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Pochon, S.

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
[Crossref] [PubMed]

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Ross, K. J.

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Shirinyan, A. S.

A. S. Shirinyan and M. Wautelet, “Phase separation in nanoparticles,” Nanotechnology 15, 1720–1731 (2004).
[Crossref]

Smirnov, B. M.

R. S. Berry and B. M. Smirnov, “Phase stability of solid clusters,” J. Chem. Phys. 113(2), 728–737 (2000).
[Crossref]

Soares, B. F.

K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
[Crossref] [PubMed]

Stevens, G. C.

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Wautelet, M.

A. S. Shirinyan and M. Wautelet, “Phase separation in nanoparticles,” Nanotechnology 15, 1720–1731 (2004).
[Crossref]

M. Wautelet, “Phase stability of electronically excited Si nanoparticles,” J. Phys.: Condens. Matter 16, L163–L166 (2004).
[Crossref]

Zheludev, N. I.

K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
[Crossref]

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
[Crossref] [PubMed]

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
[Crossref] [PubMed]

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

Appl. Phys. Lett. (1)

K. F. MacDonald, V. A. Fedotov, S. Pochon, K. J. Ross, G. C. Stevens, N. I. Zheludev, W. S. Brocklesby, and V. I. Emel’yanov, “Optical control of gallium nanoparticle growth,” Appl. Phys. Lett. 84, 1643 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. F. MacDonald, B. F. Soares, M. V. Bashevoy, and N. I. Zheludev, “Controlling light with light via structural transformations in metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 12, 371 (2006).
[Crossref]

J. Chem. Phys. (1)

R. S. Berry and B. M. Smirnov, “Phase stability of solid clusters,” J. Chem. Phys. 113(2), 728–737 (2000).
[Crossref]

J. Chim. Phys. (1)

A. Defrain, “États métastables du gallium, surfusion et polymorphisme,” J. Chim. Phys. 74, 851–862 (1977).

J. Phys.: Condens. Matter (1)

M. Wautelet, “Phase stability of electronically excited Si nanoparticles,” J. Phys.: Condens. Matter 16, L163–L166 (2004).
[Crossref]

Nano Lett. (1)

B. F. Soares, K. F. MacDonald, V. A. Fedotov, and N. I. Zheludev, “Light-induced structural transformations in a single gallium nanoparticulate,” Nano Lett. 5, 2104–2107 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

A. S. Shirinyan and M. Wautelet, “Phase separation in nanoparticles,” Nanotechnology 15, 1720–1731 (2004).
[Crossref]

Phys. Rev. Lett. (1)

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation,” Phys. Rev. Lett. 92, 145,702 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. The experimental setup used to demonstrate optical memory functionality of a film of gallium nanoparticles self-assembled on the end face of an optical fiber. The inset is an scanning electron microscope image of the gallium nanoparticle film on the core of the cleaved optical fiber.
Fig. 2. (a)
Fig. 2. (a) Dynamic coexistence of structural forms in the gallium nanoparticle film at different stages during the phase transition. Starting from I in a low reflectivity ‘0’ state, the film remains in this memory state until the temperature passes T 2 (the upper boundary of the phase coexistence domain) after which the film enters and remains in a high reflectivity ‘1’ state. The film only returns to the low reflectivity ‘0’ state on passing below the lower switching temperature T 0. The arrows show the hysteresis cycle followed during a complete temperature scan from below T 0 to above T 2 and back again. (b) Demonstration of ‘memory write’ functionality: switching from the low reflectivity ‘0’ state to the high reflectivity ‘1’ state, using a single laser pulse.
Fig. 3.
Fig. 3. Differential change of reflectance between the bias level and the induced change in the ‘0’ and ‘1’ level. As the pulses of the weak optical probe, shown in (a), excite the nanoparticle film with an energy less than that of a full transition, the reflectance of the low-reflectivity state ‘0’ is positively shifted, as shown in (b). For the high-reflectivity state ‘1’, the shift is instead negative as shown in (c), thus providing means to extract a sensitive read-out functionality of the nanoparticle memory.

Metrics