Abstract

We report a tunable optical pulse expander capable of producing narrowband long pulses, starting from a femtosecond optical parametric amplifier (OPA), which is based on chirp-matched frequency mixing technique. The device delivers nJ-level pulses with bandwidth of ~0.1 nm and duration of ~45 ps within its tuning range from 1000 nm to 1090 nm. The combination of a femtosecond OPA and a pulse expander may provide synchronized and both tunable femtosecond and tens of picoseconds pulses simultaneously, which should be promising in the applications where both temporal and spectral resolutions are needed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
    [CrossRef] [PubMed]
  2. F. Wise, L. J. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002).
    [CrossRef]
  3. M. A. Arbore, O. Marco, and M. M. Fejer, "Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings," Opt. Lett. 22, 865-867 (1997).
    [CrossRef] [PubMed]
  4. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  5. D. Marom, D. Panasenko, R. Rokitski, P. C. Sun, and Y. Fainman, "Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves," Opt. Lett. 25, 132-134 (2000).
    [CrossRef]
  6. C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24, 783-785 (1999).
    [CrossRef]
  7. B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14, 630-632 (1989).
    [CrossRef] [PubMed]
  8. A. C. L. Boscheron, C. J. Sauteret, and A. Migus, "Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-nm ultrabroadband or ultrashort-pulse generation," J. Opt. Soc. Am. B 13, 818-826 (1996).
    [CrossRef]
  9. F. Raoult, A. C. L. Boscheron, D. Husson, C. Rouyer, C. Sauteret, and A. Migus, "Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching," Opt. Lett. 24, 354-356 (1999).
    [CrossRef]
  10. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, "Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses," Opt. Lett. 23, 1117-1119 (1998).
    [CrossRef]
  11. X. Ribeyre, C. Rouyer, F. Raoult, D. Husson, C. Sauteret, and A. Migus, "All-optical programmable shaping of narrow-band nanosecond pulses with picosecond accuracy by use of adapted chirps and quadratic nonlinearities," Opt. Lett. 26, 1173-1175 (2001).
    [CrossRef]
  12. G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
    [CrossRef]
  13. D. W. McCamant, P. Kukura, and R. A. Mathies, "Femtosecond broadband stimulated Raman: A new approach for high-performance vibrational spectroscopy," Appl. Spectrosc. 57, 1317-1323 (2003).
    [CrossRef] [PubMed]
  14. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, "Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses," Opt. Lett. 23, 1594-1596 (1998).
    [CrossRef]
  15. H. Y. Zhu, T. Wang, W. G. Zheng, P. Yuan, L. J. Qian, and D. Y. Fan, "Efficient second harmonic generation of femtosecond laser at 1 ?m," Opt. Express 12, 2150-2155 (2004).
    [CrossRef] [PubMed]
  16. H. Luo, L. J. Qian, P. Yuan, H. Y. Zhu, and S. C. Wen, "Hybrid seeded femtosecond optical parametric amplifier," Opt. Express 13, 9747-9752 (2005).
    [CrossRef] [PubMed]

2005

2004

H. Y. Zhu, T. Wang, W. G. Zheng, P. Yuan, L. J. Qian, and D. Y. Fan, "Efficient second harmonic generation of femtosecond laser at 1 ?m," Opt. Express 12, 2150-2155 (2004).
[CrossRef] [PubMed]

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

2003

2002

F. Wise, L. J. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002).
[CrossRef]

2001

2000

1999

1998

1997

M. A. Arbore, O. Marco, and M. M. Fejer, "Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings," Opt. Lett. 22, 865-867 (1997).
[CrossRef] [PubMed]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

1996

1989

Arbore, M. A.

Bennett, C. V.

Boscheron, A. C. L.

Collier, J. L.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Dorchies, F.

Fainman, Y.

Fan, D. Y.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

H. Y. Zhu, T. Wang, W. G. Zheng, P. Yuan, L. J. Qian, and D. Y. Fan, "Efficient second harmonic generation of femtosecond laser at 1 ?m," Opt. Express 12, 2150-2155 (2004).
[CrossRef] [PubMed]

Fejer, M. M.

Gallmann, L.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Husson, D.

Keller, U.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Kolner, B. H.

Kukura, P.

Langley, A. J.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Liu, X.

F. Wise, L. J. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002).
[CrossRef]

Luo, H.

Malka, V.

Marco, O.

Marom, D.

Mathies, R. A.

Matousek, P.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Matuschek, N.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

McCamant, D. W.

Migus, A.

Modena, A.

Nazarathy, M.

Panasenko, D.

Petralli-Mallow, T. P.

Qian, L. J.

H. Luo, L. J. Qian, P. Yuan, H. Y. Zhu, and S. C. Wen, "Hybrid seeded femtosecond optical parametric amplifier," Opt. Express 13, 9747-9752 (2005).
[CrossRef] [PubMed]

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

H. Y. Zhu, T. Wang, W. G. Zheng, P. Yuan, L. J. Qian, and D. Y. Fan, "Efficient second harmonic generation of femtosecond laser at 1 ?m," Opt. Express 12, 2150-2155 (2004).
[CrossRef] [PubMed]

F. Wise, L. J. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002).
[CrossRef]

Raoult, F.

Ribeyre, X.

Richter, L. J.

Rokitski, R.

Ross, I. N.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Rouyer, C.

Sauteret, C.

Sauteret, C. J.

Steinmeyer, G.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Stephenson, J. C.

Sun, P. C.

Sutter, D. H.

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Towrie, M.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Wang, T.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

H. Y. Zhu, T. Wang, W. G. Zheng, P. Yuan, L. J. Qian, and D. Y. Fan, "Efficient second harmonic generation of femtosecond laser at 1 ?m," Opt. Express 12, 2150-2155 (2004).
[CrossRef] [PubMed]

Wen, S. C.

Wise, F.

F. Wise, L. J. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002).
[CrossRef]

Xu, G.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Yuan, P.

Zheng, W. G.

Zhu, C. S.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

Zhu, H. Y.

Appl. Spectrosc.

IEEE J. Sel. Top. Quantum Electron.

G. Xu, L. J. Qian, T. Wang, H. Y. Zhu, C. S. Zhu, and D. Y. Fan, "Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes," IEEE J. Sel. Top. Quantum Electron. 10, 174-180 (2004).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

F. Wise, L. J. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

D. Marom, D. Panasenko, R. Rokitski, P. C. Sun, and Y. Fainman, "Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves," Opt. Lett. 25, 132-134 (2000).
[CrossRef]

B. H. Kolner and M. Nazarathy, "Temporal imaging with a time lens," Opt. Lett. 14, 630-632 (1989).
[CrossRef] [PubMed]

M. A. Arbore, O. Marco, and M. M. Fejer, "Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings," Opt. Lett. 22, 865-867 (1997).
[CrossRef] [PubMed]

F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, "Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses," Opt. Lett. 23, 1117-1119 (1998).
[CrossRef]

F. Raoult, A. C. L. Boscheron, D. Husson, C. Rouyer, C. Sauteret, and A. Migus, "Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching," Opt. Lett. 24, 354-356 (1999).
[CrossRef]

C. V. Bennett and B. H. Kolner, "Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms," Opt. Lett. 24, 783-785 (1999).
[CrossRef]

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, "Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses," Opt. Lett. 23, 1594-1596 (1998).
[CrossRef]

X. Ribeyre, C. Rouyer, F. Raoult, D. Husson, C. Sauteret, and A. Migus, "All-optical programmable shaping of narrow-band nanosecond pulses with picosecond accuracy by use of adapted chirps and quadratic nonlinearities," Opt. Lett. 26, 1173-1175 (2001).
[CrossRef]

Science

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics," Science 286, 1507-1512 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental set up. G1, G2, gratings; M, dichroic mirror; RM1-RM4, roof-mirror reflectors; L, achromatic lens; All unmarked mirrors are high reflective silver mirrors. Two half-wave plates are used to keep the grating diffraction plane parallel to the optical table.

Fig. 2.
Fig. 2.

Typical spectra of the generated pulses at ~1053 nm: (a) OPA, and (b) pulse expander. Insets: the corresponding autocorrelation traces.

Fig. 3.
Fig. 3.

Tunable spectra from OPA (a–c) and pulse expander (d–f). The spectra were measured at the short-wavelength tuning edge, middle, and long-wavelength tuning edge of OPA and pulse expander, respectively.

Fig. 4.
Fig. 4.

The measured bandwidth of idler pulse as a function of the detuning of grating position (G2) around the optimum position for chirp matching.

Metrics