Abstract

Obliquely deposited thin films with helical microstructures exhibit circular Bragg effects. In this study, the effect of film porosity on the circular birefringence of helical thin films is investigated in TiO2 films deposited at angles ranging from 30° to 87° in order to determine the various mechanisms responsible for the circular Bragg effects. Specular transmittance and diffuse scattering measurements indicate two film growth regimes of enhanced circular Bragg effects: The first regime is due to a maximum in form birefringence while the second regime is caused by strong anisotropic scattering.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband circular polarization reflector fabricated by glancing angle deposition

Yong Jun Park, K. M. A. Sobahan, and Chang Kwon Hwangbo
Opt. Express 16(8) 5186-5192 (2008)

Optical properties of porous helical thin films

Andy C. van Popta, Jeremy C. Sit, and Michael J. Brett
Appl. Opt. 43(18) 3632-3639 (2004)

Sculptured anti-reflection coatings for high power lasers

Tomas Tolenis, Lina Grinevičiūtė, Rytis Buzelis, Linas Smalakys, Egidijus Pupka, Simas Melnikas, Algirdas Selskis, Ramutis Drazdys, and Andrius Melninkaitis
Opt. Mater. Express 7(4) 1249-1258 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
    [Crossref]
  2. T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
    [Crossref] [PubMed]
  3. R. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
    [Crossref]
  4. A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proceedings of the Royal Society of London A 448, 419–437 (1995).
    [Crossref]
  5. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [Crossref]
  6. K. J. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U S patent 5,866,204 (2 February 1999).
  7. K. J. Robbie and M. J. Brett, “Shadow sculpted thin films,” U S patent 6,248,422 (19 June 2001).
  8. K. J. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U S patent 6,206,065 (27 March 2001).
  9. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
    [Crossref]
  10. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
    [Crossref]
  11. Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
    [Crossref]
  12. A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow bandpass filters fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
    [Crossref] [PubMed]
  13. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
    [Crossref] [PubMed]
  14. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
    [Crossref] [PubMed]
  15. Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
    [Crossref]
  16. I. Hodgkinson and Q. Wu, “Inorganic chiral optical materials,” Adv. Mater. 13, 889–897 (2001).
    [Crossref]
  17. S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of Chiral Thin Film and Liquid Crystal Hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
    [Crossref]
  18. A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1998).
    [Crossref]
  19. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
    [Crossref]
  20. C. F. Borhen and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983), pp. 44–56.
  21. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
    [Crossref]
  22. K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
    [Crossref]
  23. J. J. Steele, K. D. Harris, and M. J. Brett, “Nanostructured oxide films for high-speed humidity sensors,” Mat. Res. Soc. Symp. Proc. 788, 473–478 (2004).
  24. J. N. Broughton and M. J. Brett, “Electrochem. Solid-State Lett. 5, A279–A282 (2002).
  25. K. Robbie and Ph.D. Thesis, University of Alberta, Edmonton, AB, (1998).
  26. I. Hodgkinson, Q. Wu, and S. Collett, “Dispersion equations for vacuum-deposited tilted-columnar biaxial media,” Appl. Opt. 40, 452–457 (2001).
    [Crossref]
  27. R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique-incidence thin metal-films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992).
    [Crossref]
  28. G. Beydaghyan, K. Kaminska, T. Brown, and K. Robbie, “Enhaced birefringence in vacuum evaporated silicon thin films,” Appl. Opt. 43, 5343–5349 (2004).
    [Crossref] [PubMed]
  29. A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
    [Crossref] [PubMed]

2004 (5)

2003 (3)

2002 (3)

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

J. N. Broughton and M. J. Brett, “Electrochem. Solid-State Lett. 5, A279–A282 (2002).

2001 (5)

I. Hodgkinson, Q. Wu, and S. Collett, “Dispersion equations for vacuum-deposited tilted-columnar biaxial media,” Appl. Opt. 40, 452–457 (2001).
[Crossref]

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

I. Hodgkinson and Q. Wu, “Inorganic chiral optical materials,” Adv. Mater. 13, 889–897 (2001).
[Crossref]

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of Chiral Thin Film and Liquid Crystal Hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[Crossref]

1998 (1)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1998).
[Crossref]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

1995 (1)

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proceedings of the Royal Society of London A 448, 419–437 (1995).
[Crossref]

1993 (1)

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[Crossref]

1992 (2)

R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique-incidence thin metal-films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992).
[Crossref]

R. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
[Crossref]

1989 (1)

1983 (1)

C. F. Borhen and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983), pp. 44–56.

1959 (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Arnold, M.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[Crossref]

Azzam, R.

R. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
[Crossref]

Beydaghyan, G.

Borhen, C. F.

C. F. Borhen and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983), pp. 44–56.

Brett, M. J.

J. J. Steele, K. D. Harris, and M. J. Brett, “Nanostructured oxide films for high-speed humidity sensors,” Mat. Res. Soc. Symp. Proc. 788, 473–478 (2004).

A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow bandpass filters fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545–2547 (2004).
[Crossref] [PubMed]

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[Crossref] [PubMed]

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[Crossref]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[Crossref] [PubMed]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

J. N. Broughton and M. J. Brett, “Electrochem. Solid-State Lett. 5, A279–A282 (2002).

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of Chiral Thin Film and Liquid Crystal Hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[Crossref]

R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique-incidence thin metal-films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992).
[Crossref]

K. J. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U S patent 6,206,065 (27 March 2001).

K. J. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U S patent 5,866,204 (2 February 1999).

K. J. Robbie and M. J. Brett, “Shadow sculpted thin films,” U S patent 6,248,422 (19 June 2001).

Broer, D. J.

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of Chiral Thin Film and Liquid Crystal Hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[Crossref]

Broughton, J. N.

J. N. Broughton and M. J. Brett, “Electrochem. Solid-State Lett. 5, A279–A282 (2002).

Brown, T.

Chutinan, A.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1998).
[Crossref]

Collett, S.

De Silva, L.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[Crossref]

Gonzalez, E. J.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

Harris, K. D.

J. J. Steele, K. D. Harris, and M. J. Brett, “Nanostructured oxide films for high-speed humidity sensors,” Mat. Res. Soc. Symp. Proc. 788, 473–478 (2004).

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

Hawkeye, M. H.

Hodgkinson, I.

Hodgkinson, I. J.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[Crossref]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

Huffman, D. R.

C. F. Borhen and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983), pp. 44–56.

John, S.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[Crossref]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

Kaminska, K.

Kennedy, S. R.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[Crossref]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[Crossref] [PubMed]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of Chiral Thin Film and Liquid Crystal Hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[Crossref]

Kowal, J.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Lakhtakia, A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proceedings of the Royal Society of London A 448, 419–437 (1995).
[Crossref]

Lu, T. M.

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

McCall, M. W.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

Miguez, H.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[Crossref]

Motohiro, T.

Noda, S.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1998).
[Crossref]

Robbie, K.

G. Beydaghyan, K. Kaminska, T. Brown, and K. Robbie, “Enhaced birefringence in vacuum evaporated silicon thin films,” Appl. Opt. 43, 5343–5349 (2004).
[Crossref] [PubMed]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
[Crossref] [PubMed]

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

K. Robbie and Ph.D. Thesis, University of Alberta, Edmonton, AB, (1998).

Robbie, K. J.

K. J. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U S patent 5,866,204 (2 February 1999).

K. J. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U S patent 6,206,065 (27 March 2001).

K. J. Robbie and M. J. Brett, “Shadow sculpted thin films,” U S patent 6,248,422 (19 June 2001).

Sherwin, J. A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

Sit, J. C.

Smy, T.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[Crossref]

R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique-incidence thin metal-films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992).
[Crossref]

Steele, J. J.

J. J. Steele, K. D. Harris, and M. J. Brett, “Nanostructured oxide films for high-speed humidity sensors,” Mat. Res. Soc. Symp. Proc. 788, 473–478 (2004).

Taga, Y.

Tait, R. N.

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[Crossref]

R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique-incidence thin metal-films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992).
[Crossref]

Takeuchi, E.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[Crossref]

Thesis, Ph.D.

K. Robbie and Ph.D. Thesis, University of Alberta, Edmonton, AB, (1998).

Toader, O.

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[Crossref]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

van Popta, A. C.

Vick, D.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

Wang, G. C.

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

Wang, P. I.

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

Weiglhofer, W. S.

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proceedings of the Royal Society of London A 448, 419–437 (1995).
[Crossref]

Wu, Q.

Wu, Q. H.

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[Crossref]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

Ye, D. X.

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

Young, N. O.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Zhao, Y. P.

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

Adv. Mater. (1)

I. Hodgkinson and Q. Wu, “Inorganic chiral optical materials,” Adv. Mater. 13, 889–897 (2001).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

R. Azzam, “Chiral thin solid films: method of deposition and applications,” Appl. Phys. Lett. 61, 3118–3120 (1992).
[Crossref]

Int. J. Nanosci. (1)

Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, “Fabrication of Si nanocolumns and Si square spirals of self-assembled monolayer colloid substrates,” Int. J. Nanosci. 1, 87–97 (2002).
[Crossref]

J. Appl. Phys. (1)

Q. H. Wu, L. De Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, “All-silicon polarizing filters for near-infrared wavelengths,” J. Appl. Phys. 95, 402–404 (2004).
[Crossref]

J. Vac. Sci. Technol. A (2)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

R. N. Tait, T. Smy, and M. J. Brett, “Structural anisotropy in oblique-incidence thin metal-films,” J. Vac. Sci. Technol. A 10, 1518–1521 (1992).
[Crossref]

Liq. Cryst. (1)

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of Chiral Thin Film and Liquid Crystal Hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[Crossref]

Mat. Res. Soc. Symp. Proc. (1)

J. J. Steele, K. D. Harris, and M. J. Brett, “Nanostructured oxide films for high-speed humidity sensors,” Mat. Res. Soc. Symp. Proc. 788, 473–478 (2004).

Nano Lett. (1)

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

Nature (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[Crossref]

Opt. Commun. (1)

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculpted-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[Crossref]

Opt. Lett. (1)

Photon. Nanostruct. (1)

S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photon. Nanostruct. 1, 37–42 (2003).
[Crossref]

Phys. Rev. B (1)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1998).
[Crossref]

Proceedings of the Royal Society of London A (1)

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proceedings of the Royal Society of London A 448, 419–437 (1995).
[Crossref]

Surf. Coat. Technol. (1)

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Technol. 138, 185–191 (2001).
[Crossref]

Thin Solid Films (1)

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[Crossref]

Other (6)

C. F. Borhen and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983), pp. 44–56.

K. J. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U S patent 5,866,204 (2 February 1999).

K. J. Robbie and M. J. Brett, “Shadow sculpted thin films,” U S patent 6,248,422 (19 June 2001).

K. J. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U S patent 6,206,065 (27 March 2001).

J. N. Broughton and M. J. Brett, “Electrochem. Solid-State Lett. 5, A279–A282 (2002).

K. Robbie and Ph.D. Thesis, University of Alberta, Edmonton, AB, (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. SEM images of helical obliquely deposited films deposited at (a) 30°, (b) 65°, (c) 80° and (d) 87° illustrate the wide range of attainable film porosities. Side views are shown in the left column, top-down views are shown in the right column.
Fig. 2.
Fig. 2. (a). Transmittance and (b) selective transmittance spectra of a helical film deposited at α = 65°.
Fig. 3.
Fig. 3. Peak selective transmittance wavelength vs. deposition angle α.
Fig. 4.
Fig. 4. Maximum selective specular transmittance of circularly polarized light in helical TiO2 thin films
Fig. 5.
Fig. 5. (a). Maximum selective diffuse transmittance of circularly polarized light in helical TiO2 thin films; (b) Maximum selective diffuse reflectance of circularly polarized light in helical TiO2 thin films.
Fig. 6.
Fig. 6. Maximum selective specular transmittance of circularly polarized light in helical TiO2 films (○ diffuse components included, ● diffuse components removed).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( LCP ) s T ( RCP ) s = 2 m 14 ( λ ) .
T ( LCP ) D T ( RCP ) D = T ( LCP ) T ( RCP ) [ T ( LCP ) S T ( RCP ) S ] .
ρ ρ o = 2 cos ( α ) 1 + cos ( α ) .

Metrics