Abstract

The bulk scattering of synthetic fused silica for 193 nm lithography was investigated using an instrument for high-sensitive total and angle resolved scattering measurements at 193 nm. Bulk scattering coefficients α between 0.6×10-3 and 1.7×10-3 cm-1 (base e) depending on the hydroxyl (OH) content and fictive temperature of the samples were measured using a total scattering (TS) technique. The results are interpreted with regard to a model which relates scattering in fused silica to structural disorder in the material. From angle resolved scatter (ARS) measurements at 193 nm, a Rayleigh type scattering distribution was found. Using TS and ARS at 633 nm, 532 nm, and 325 nm in addition to the results at 193 nm, wavelength scaling ~n 8/λ 4 as predicted by theory is obtained. Thus, the model is demonstrated to hold from the visible spectral range down to the deep ultraviolet.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
    [CrossRef]
  2. D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
    [CrossRef]
  3. R. Olshansky, "Propagation in glass optical waveguides," Rev. Mod. Phys. 51, 341-367 (1979)
    [CrossRef]
  4. J. P. Black and K. C. Hickman, "Bulk scatter measurements in fused silica at two wavelengths; A comparison with Rayleigh scatter theory," in Optical Scattering: Applications, Measurement, and Theory II, J. C. Stover, ed., Proc. SPIE 1195, 273-284
  5. S. Sakaguchi, S. Todoroki, T. Murata, "Rayleigh scattering in silica glasses with heat treatment," J. Non-Cryst. Solids 220, 178-186 (1997)
    [CrossRef]
  6. S. Logunov, S. Kuchinsky, "Scattering losses in fused silica and CaF2 for DUV applications," in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE 5040, 1396-1407 (2003)
    [CrossRef]
  7. ISO 13696:2002, "Optics and optical instruments - Test methods for radiation scattered by optical components," International Organization for Standardization (2002)
  8. A. Duparré, "Scattering from Surfaces and thin Films," in Encyclopedia of Modern Optics, R. D. Guenther et al., eds. (Elsevier, Oxford, 2004)
  9. J. C. Stover, "Optical Scattering - Measurement and Analysis," 2nd Edition (SPIE-Press, Bellingham, Washington, 1995)
  10. S. Schröder, S. Gliech, A. Duparré, "Sensitive and flexible light scatter techniques from the VUV to IR regions," in Optical Fabrication, Testing, and Metrology II, A. Duparré, R. Geyl, L. Wang, eds., Proc. SPIE 5965, 424-432 (2005)
  11. S. Schröder, M. Kamprath, A. Duparré, "Scatter analysis of optical components from 193 nm to 13.5 nm," in Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II, A. Duparré, B. Singh, Z.-H. Gu, eds., Proc. SPIE 5878, 232-240 (2005)
  12. S. Schröder, S. Gliech, A. Duparré, "Measurement system to determine the total and angle resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions," Appl. Opt. 44, 6093-6107 (2005)
    [CrossRef] [PubMed]
  13. R. Brückner, "Silicon Dioxide", in "Encyclopedia of Applied Physics" Vol. 18, 1997
  14. J.C. MikkelsenJr., F.L. Galeener, W.J. Mosby, "Raman Characterization of hydroxyl in fused silica and thermal grown SiO2," J. Electron. Mater.  10 (4), 1981
    [CrossRef]
  15. F.L. Galeener, "Raman and ESR studies of the thermal history of amorphous SiO2," J. Non-Cryst. Solids 71,373-386 (1985)
    [CrossRef]
  16. Layertec GmbH, Germany
  17. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, "Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components," Appl. Opt. 41, 154-171 (2002)
    [CrossRef] [PubMed]
  18. K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
    [CrossRef]
  19. C. Levelut, A. Faivre, R. Le Parc, B. Champagnon, J.-L. Hazemann, J.-P. Simon, "In situ measurements of density fluctuations and compressibility in silica glasses as a function of temperature and thermal history," Phys. Rev. B 72, 224201-1-11 (2005)
    [CrossRef]

2005

2002

1997

K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
[CrossRef]

S. Sakaguchi, S. Todoroki, T. Murata, "Rayleigh scattering in silica glasses with heat treatment," J. Non-Cryst. Solids 220, 178-186 (1997)
[CrossRef]

1985

F.L. Galeener, "Raman and ESR studies of the thermal history of amorphous SiO2," J. Non-Cryst. Solids 71,373-386 (1985)
[CrossRef]

1981

J.C. MikkelsenJr., F.L. Galeener, W.J. Mosby, "Raman Characterization of hydroxyl in fused silica and thermal grown SiO2," J. Electron. Mater.  10 (4), 1981
[CrossRef]

1979

R. Olshansky, "Propagation in glass optical waveguides," Rev. Mod. Phys. 51, 341-367 (1979)
[CrossRef]

1973

J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
[CrossRef]

D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
[CrossRef]

Bennett, J. M.

DiDomenico, M.

D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
[CrossRef]

Duparré, A.

Ferre-Borrull, J.

Galeener, F.L.

F.L. Galeener, "Raman and ESR studies of the thermal history of amorphous SiO2," J. Non-Cryst. Solids 71,373-386 (1985)
[CrossRef]

J.C. MikkelsenJr., F.L. Galeener, W.J. Mosby, "Raman Characterization of hydroxyl in fused silica and thermal grown SiO2," J. Electron. Mater.  10 (4), 1981
[CrossRef]

Gliech, S.

Ikushima, A. J.

K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
[CrossRef]

Ito, T.

K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
[CrossRef]

Itoh, A.

K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
[CrossRef]

Macedo, P. B.

J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
[CrossRef]

Mikkelsen, J.C.

J.C. MikkelsenJr., F.L. Galeener, W.J. Mosby, "Raman Characterization of hydroxyl in fused silica and thermal grown SiO2," J. Electron. Mater.  10 (4), 1981
[CrossRef]

Mohr, R.

J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
[CrossRef]

Montrose, C. J.

J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
[CrossRef]

Mosby, W.J.

J.C. MikkelsenJr., F.L. Galeener, W.J. Mosby, "Raman Characterization of hydroxyl in fused silica and thermal grown SiO2," J. Electron. Mater.  10 (4), 1981
[CrossRef]

Murata, T.

S. Sakaguchi, S. Todoroki, T. Murata, "Rayleigh scattering in silica glasses with heat treatment," J. Non-Cryst. Solids 220, 178-186 (1997)
[CrossRef]

Notni, G.

Olshansky, R.

R. Olshansky, "Propagation in glass optical waveguides," Rev. Mod. Phys. 51, 341-367 (1979)
[CrossRef]

Ostermayer, F.W.

D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
[CrossRef]

Pinnow, D.A.

D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
[CrossRef]

Rich, T.C.

D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
[CrossRef]

Saito, K.

K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
[CrossRef]

Sakaguchi, S.

S. Sakaguchi, S. Todoroki, T. Murata, "Rayleigh scattering in silica glasses with heat treatment," J. Non-Cryst. Solids 220, 178-186 (1997)
[CrossRef]

Schröder, S.

Schroeder, J.

J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
[CrossRef]

Steinert, J.

Todoroki, S.

S. Sakaguchi, S. Todoroki, T. Murata, "Rayleigh scattering in silica glasses with heat treatment," J. Non-Cryst. Solids 220, 178-186 (1997)
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D.A. Pinnow, T.C. Rich, F.W. Ostermayer, Jr., and M. DiDomenico, Jr., "Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials," Appl. Phys. Lett. 22, 527-529 (1973)
[CrossRef]

J. Am. Ceram. Soc.

J. Schroeder, R. Mohr, P. B. Macedo, C. J. Montrose, "Rayleigh and Brillouin Scattering in K2O-SiO2 Glasses," J. Am. Ceram. Soc. 56, 510-514 (1973)
[CrossRef]

J. Appl. Phys.

K. Saito, A. J. Ikushima, T. Ito, A. Itoh, "A new method of developing ultralow-loss glasses," J. Appl. Phys. 81, 7129-7134 (1997)
[CrossRef]

J. Electron. Mater

J.C. MikkelsenJr., F.L. Galeener, W.J. Mosby, "Raman Characterization of hydroxyl in fused silica and thermal grown SiO2," J. Electron. Mater.  10 (4), 1981
[CrossRef]

J. Non-Cryst. Solids

F.L. Galeener, "Raman and ESR studies of the thermal history of amorphous SiO2," J. Non-Cryst. Solids 71,373-386 (1985)
[CrossRef]

S. Sakaguchi, S. Todoroki, T. Murata, "Rayleigh scattering in silica glasses with heat treatment," J. Non-Cryst. Solids 220, 178-186 (1997)
[CrossRef]

Rev. Mod. Phys.

R. Olshansky, "Propagation in glass optical waveguides," Rev. Mod. Phys. 51, 341-367 (1979)
[CrossRef]

Other

J. P. Black and K. C. Hickman, "Bulk scatter measurements in fused silica at two wavelengths; A comparison with Rayleigh scatter theory," in Optical Scattering: Applications, Measurement, and Theory II, J. C. Stover, ed., Proc. SPIE 1195, 273-284

R. Brückner, "Silicon Dioxide", in "Encyclopedia of Applied Physics" Vol. 18, 1997

S. Logunov, S. Kuchinsky, "Scattering losses in fused silica and CaF2 for DUV applications," in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE 5040, 1396-1407 (2003)
[CrossRef]

ISO 13696:2002, "Optics and optical instruments - Test methods for radiation scattered by optical components," International Organization for Standardization (2002)

A. Duparré, "Scattering from Surfaces and thin Films," in Encyclopedia of Modern Optics, R. D. Guenther et al., eds. (Elsevier, Oxford, 2004)

J. C. Stover, "Optical Scattering - Measurement and Analysis," 2nd Edition (SPIE-Press, Bellingham, Washington, 1995)

S. Schröder, S. Gliech, A. Duparré, "Sensitive and flexible light scatter techniques from the VUV to IR regions," in Optical Fabrication, Testing, and Metrology II, A. Duparré, R. Geyl, L. Wang, eds., Proc. SPIE 5965, 424-432 (2005)

S. Schröder, M. Kamprath, A. Duparré, "Scatter analysis of optical components from 193 nm to 13.5 nm," in Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II, A. Duparré, B. Singh, Z.-H. Gu, eds., Proc. SPIE 5878, 232-240 (2005)

Layertec GmbH, Germany

C. Levelut, A. Faivre, R. Le Parc, B. Champagnon, J.-L. Hazemann, J.-P. Simon, "In situ measurements of density fluctuations and compressibility in silica glasses as a function of temperature and thermal history," Phys. Rev. B 72, 224201-1-11 (2005)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

System for TS and ARS measurements at 157 nm and 193 nm. (1) Excimer laser, (2) attenuation system, (3) spatial filter, (4) reference detector, (5) sample, (6) backscattered light, (7) Coblentz sphere, (8) detector, (9) beam dump, (G) double goniometer module for ARS.

Fig. 2.
Fig. 2.

Double-goniometer set-up for ARS measurements at 193 nm and 157 nm.

Fig. 3.
Fig. 3.

Disc sample for ARS measurements at 193 nm. (1) entrance surface and (2) exit surface of the specular beam (3)

Fig. 4.
Fig. 4.

ARS at 193 nm of fused silica disc for incident radiation polarized perpendicular (s-pol.) and parallel (p-pol.) to the plane of measurement.

Fig. 5.
Fig. 5.

TSb mappings of sample set A3. The plots show the TSb values on a log-scale from 9×10-5 to 4×10-4 over the horizontal sample position in mm. From left to right sample thicknesses are 2 mm, 5 mm, 10 mm, 15 mm, and 20 mm respectively.

Fig. 6.
Fig. 6.

TS values at 193 nm versus sample thickness. The slopes of the linear fits are the scattering coefficients α.

Fig. 7.
Fig. 7.

Scattering coefficient at 193 nm versus fictive temperature for all sample sets.

Fig. 8.
Fig. 8.

Scattering coefficients versus wavelength for all sample sets as measured by TS. The lines represent intermediate fits ~1/λ 4 and ~n 8/λ 4.

Fig. 9.
Fig. 9.

Scattering coefficients versus wavelength for sample set C2 as measured by ARS. The lines represent intermediate fits ~1/λ 4 and ~n 8/λ 4.

Tables (2)

Tables Icon

Table 1. Sample overview.

Tables Icon

Table 2. Scattering coefficients α and their uncertainty ∆α of all sample sets measured at 193 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T S b = P b P i .
ARS ( θ s ) = Δ P s ( θ s ) Δ Ω s P i ,
ARS ( θ s ) = { C for s polarized incident light C cos 2 θ s for p polarized incident light ,
TS Vol = 1 e α · d ,
T S Vol α · d .
α = 8 π 3 3 λ 4 n 8 p 2 β T k B T f ,

Metrics