Abstract

We have measured thermal conductivity of GdVO4, YVO4, and Y3Al5O12. In order to avoid the miss leading from three-dimensional (3D) thermal diffusion, we developed the quasi-one-dimensional (q1D) flash method. By taking in account the heat radiation effect in transparent materials for this measurement, YVO4 was found to have larger thermal conductivity than GdVO4. The measured thermal conductivities were 12.1, 10.5, 10.1, 8.9, and 8.5 W/mK for c-cut YVO4, c-cut GdVO4, YAG, a-cut YVO4, and a-cut GdVO4, respectively. The dependence of Nd-conductivity coefficient (dκ/dC Nd) for convenient evaluation of the doping effect in thermal conductivity is also discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide," Jpn. J. Appl. Phys. 44, L1164-L1166 (2005).
    [CrossRef]
  2. A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
    [CrossRef]
  3. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers," Opt. Lett. 16, 1955-1957 (1991).
    [CrossRef] [PubMed]
  4. Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
    [CrossRef]
  5. A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
    [CrossRef]
  6. V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003).
    [CrossRef] [PubMed]
  7. Y. Sato and T. Taira, "Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process," IEEE.J. Sel. Top. Quantum Electron. 11, 613-620 (2005).
    [CrossRef]
  8. J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).
  9. T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).
  10. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
    [CrossRef]
  11. R. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
    [CrossRef]
  12. J. A. Cape and G. W. Lehman, "Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity," J. Appl. Phys. 34, 1909-1913 (1963).
    [CrossRef]
  13. J. Blumm and J. Opferman, "Improvement of the mathematical modeling of flash measurements," High Temp. High Press.,  34, 515-521 (2002).
    [CrossRef]
  14. H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
    [CrossRef]
  15. T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
    [CrossRef]
  16. R. W. G. Wyckoff, Crystal structures 2nd ed. (John Wiley & Sons, Inc. 1965) pp.17 and pp.223.
  17. R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
    [CrossRef]

2005

Y. Sato and T. Taira, "Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process," IEEE.J. Sel. Top. Quantum Electron. 11, 613-620 (2005).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide," Jpn. J. Appl. Phys. 44, L1164-L1166 (2005).
[CrossRef]

2004

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

2003

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003).
[CrossRef] [PubMed]

2002

J. Blumm and J. Opferman, "Improvement of the mathematical modeling of flash measurements," High Temp. High Press.,  34, 515-521 (2002).
[CrossRef]

1998

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
[CrossRef]

1993

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

1992

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

1991

1963

R. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
[CrossRef]

J. A. Cape and G. W. Lehman, "Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity," J. Appl. Phys. 34, 1909-1913 (1963).
[CrossRef]

1961

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

Baba, T.

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

Blumm, J.

J. Blumm and J. Opferman, "Improvement of the mathematical modeling of flash measurements," High Temp. High Press.,  34, 515-521 (2002).
[CrossRef]

Brignon, A.

A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
[CrossRef]

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

Cape, J. A.

J. A. Cape and G. W. Lehman, "Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity," J. Appl. Phys. 34, 1909-1913 (1963).
[CrossRef]

Cowan, R.

R. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
[CrossRef]

Feugnet, G.

A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
[CrossRef]

Fournier, D.

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

Fricke, O.

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

Furukawa, Y.

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

Gaume, R.

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

Hahn, O.

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

Hautzinger, G.

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

Higuch, M.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Hofmann, R.

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

Hong, J. H.

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

Huber, G.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Huignard, J. -P.

A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
[CrossRef]

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

Jensen, T.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Kobayashi, M.

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

Kobayashi, T.

Kodaira, K.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Lehman, G. W.

J. A. Cape and G. W. Lehman, "Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity," J. Appl. Phys. 34, 1909-1913 (1963).
[CrossRef]

Lupei, V.

V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003).
[CrossRef] [PubMed]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

Machida, H.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Mehling, H.

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

Meyen, J. P.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Mukai, A.

Nakamura, O.

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

Nilsson, O.

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

Nozawa, Y.

Ogawa, T.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Ono, A.

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

Onodera, K.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Opferman, J.

J. Blumm and J. Opferman, "Improvement of the mathematical modeling of flash measurements," High Temp. High Press.,  34, 515-521 (2002).
[CrossRef]

Ostroumov, V. G.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

Pavel, N.

V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003).
[CrossRef] [PubMed]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

Pocholle, J. -P.

A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
[CrossRef]

Roger, J. -P.

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

Sagae, H.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

Y. Sato and T. Taira, "Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process," IEEE.J. Sel. Top. Quantum Electron. 11, 613-620 (2005).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003).
[CrossRef] [PubMed]

Shcherbakov, I.A.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Suliyanti, M. M.

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, "Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process," IEEE.J. Sel. Top. Quantum Electron. 11, 613-620 (2005).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide," Jpn. J. Appl. Phys. 44, L1164-L1166 (2005).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, Y. Sato, and T. Taira, "Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4," Opt. Lett. 28, 2366-2368 (2003).
[CrossRef] [PubMed]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers," Opt. Lett. 16, 1955-1957 (1991).
[CrossRef] [PubMed]

Tsunekane, M.

M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide," Jpn. J. Appl. Phys. 44, L1164-L1166 (2005).
[CrossRef]

Urata, Y.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Viana, B.

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

Vivien, D.

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

Wada, S.

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Zagumennyi, A. I.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Appl. Phys. Lett.

R. Gaume,B. Viana, D. Vivien, J. -P. Roger, and D. Fournier, "A simple model for the prediction of thermal conductivity in pure and doped insulating crystals," Appl. Phys. Lett.,  83, 1355-1357 (2003).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

High Temp. High Press.

J. Blumm and J. Opferman, "Improvement of the mathematical modeling of flash measurements," High Temp. High Press.,  34, 515-521 (2002).
[CrossRef]

IEEE. J. Quantum Electron.

A. Brignon, G. Feugnet, J. -P. Huignard, and J. -P. Pocholle, "Comact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array," IEEE. J. Quantum Electron. 34, 577-585 (1998).
[CrossRef]

Intl. J. Thermophysics

H. Mehling, G. Hautzinger, O. Nilsson, O. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Intl. J. Thermophysics,  19, 941-949 (1998).
[CrossRef]

J. Appl. Phys.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961).
[CrossRef]

R. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963).
[CrossRef]

J. A. Cape and G. W. Lehman, "Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity," J. Appl. Phys. 34, 1909-1913 (1963).
[CrossRef]

J. Sel. Top. Quantum Electron.

Y. Sato and T. Taira, "Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process," IEEE.J. Sel. Top. Quantum Electron. 11, 613-620 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide," Jpn. J. Appl. Phys. 44, L1164-L1166 (2005).
[CrossRef]

Opt. Lett.

OSA Trends in Optics and Photonics

J. Saikawa, Y. Sato, T. Taira, O. Nakamura, and Y. Furukawa, "879-nm direct-pumped Nd:GdVO4 lasers: 1.3-?m laser emission and heat generation characteristics," OSA Trends in Optics and Photonics,  98, 183-187 (2005).

T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Higuch, and K. Kodaira, "879nm-LD-pumped Nd:GdVO4 laser and its thermal property, " OSA Trends in Optics and Photonics,  94, 293-297 (2004).

Sov. Quantum Electron.

A. I. Zagumennyi, V. G. Ostroumov, I.A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, "The Nd:GdVO4 crystal: a new material for diode-pumped lasers," Sov. Quantum Electron. 22, 1071-1072 (1992).
[CrossRef]

Thermochimica Acta

T. Baba, M. Kobayashi, A. Ono, J. H. Hong, and M. M. Suliyanti, "Experimental investigation of the nonuniform heating effect in laser flash thermal diffusivity measurements," Thermochimica Acta,  218, 329-339 (1993).
[CrossRef]

Other

R. W. G. Wyckoff, Crystal structures 2nd ed. (John Wiley & Sons, Inc. 1965) pp.17 and pp.223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Detected rise in temperature of YAG with 1-mm thickness under flash method. Blue line is measured temperature and red-line is the fitting by Cape-Lehman model in ref. 12 (a) and radiation model in ref. 14(b).

Fig. 2.
Fig. 2.

Sample preparation for flash method by coating. For heat loading and temperature detection, sample should be coated by ca. 10-μm carbon (a). By inserting the 280-nm Au-coating layer the leaked flash and infra-red radiation can be reduced (b).

Fig. 3.
Fig. 3.

Concept of q1D flash method. Temperature measured by heat radiation from the back surface of the sample in ideal case (a). There is anisotropic heat dissipation into the sample holder (b). When the aperture inserted, the heat radiation affected by 3D thermal diffusion cannot be contributed to detect temperature (c).

Fig. 4.
Fig. 4.

Dependence of aperture size on the measured thermal conductivity. Thermal conductivity was measured 5 times at each conditions of aperture at 25 °C.

Fig. 5.
Fig. 5.

Heat capacities of 1.0 at.% Nd3+-doped GdVO4, YVO4, and YAG fabricated by Scientific Materials, Shandong Newphotonics, and ITI Electro-Optics, respectively.

Fig. 6.
Fig. 6.

Dependence of thermal conductivity in a-cut GdVO4 (a) and c-cut GdVO4 (b) synthesized by different suppliers. The differences between suppliers are 1.3% (a) and 2.1% (b).

Fig. 7.
Fig. 7.

Dependence of thermal conductivity in a-cut YVO4 (a) and c-cut YVO4 (b) synthesized by different suppliers. The differences between suppliers are 2.7 % (a) and 1.2% (b).

Fig. 8.
Fig. 8.

The simultaneously evaluated thermal conductivity in YAG, a-cut GdVO4 and YVO4, and c-cut GdVO4 and YVO4.

Fig. 9.
Fig. 9.

Dependence of thermal conductivity in GdVO4, YVO4, and YAG on Nd3+-doping concentration. Solid-lines are the fitting by Eq. (3), and dotted lines are extrapolated line.

Tables (2)

Tables Icon

Table 1. Problems of the measured thermal conductivity in transparent materials by the flash method.

Tables Icon

Table 2. Thermal conductivity of GdVO4, YVO4, and YAG at 25C°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T t κ 2 T x 2 = 0 ,
T ( 0 , t ) x = 4 σεT ( 0,0 ) 3 λ T ( 0 , t ) + η 4 σεT ( 0.0 ) 3 λ [ T ( 0 , t ) T ( d , t ) ] ,
T ( d , t ) x = 4 σεT ( d , 0 ) 3 λ T ( d , t ) + η 4 σεT ( 0.0 ) 3 λ [ T ( d , t ) T ( 0 , t ) ] ,
κ = 1 π a 0 2 k B v κ 0 δ Tan 1 ( π a 0 δ κ 0 2 k B v ) ,
δ = i c i ( M i M M ) 2 ,
V N = 4 π 3 ( a 0 2 ) 3 .

Metrics