Abstract

We report a novel optical injection-locking configuration using a directly-modulated master VCSEL to injection-lock a slave VCSEL. We demonstrate an interesting RF modulation response for the modulated master laser. An RF gain up to 30 dB is attained for frequencies greater than a certain critical frequency fc, which is ~10 GHz here and increases with the injection power. In addition, an RF phase change of 2π is achieved above fc by varying the wavelength detuning. The slope of the phase-frequency curve represents an equivalent slow or fast light attained through the slave laser. We incorporate an amplifier model to explain this novel modulated-master injection-locked VCSEL configuration. Simulations show good qualitative agreement with the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi and T. Kimura, "Injection locking characteristics of an AlGaAs semiconductor laser," IEEE J. Quantum Electron. 16, 915-917 (1980).
    [CrossRef]
  2. H. Nakajima, "Demodulation of multi-gigahertz optical signal in an injection-locked distributed feedback laser oscillator," IEE Electron. Lett. 26, 1129-1131 (1990).Q1
    [CrossRef]
  3. A. C. Bordonalli, C. Walton, and A. J. Seeds, "High-performance homodyne optical injection phase- lock loop using wide-linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 8, 1217 (1996).
    [CrossRef]
  4. C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).Q2
    [CrossRef]
  5. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Technol. 54, 788-796 (2006).Q3
    [CrossRef]
  6. M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
    [CrossRef]
  7. H. Su and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
    [CrossRef]
  8. X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005)
    [CrossRef] [PubMed]
  9. B. Pesala, Z. Chen, and C. Chang-Hasnain, "Tunable pulse delay demonstration using four-wave mixing in semiconductor optical amplifiers," presented at OSA Topical Meeting of Slow and Fast Light, Washington, DC, 23-26 July 2006.
  10. X. Zhao, C. Chang-Hasnain, W. Hofmann and M. C. Amann, "Modulation efficiency enhancement of 1.55-?m injection-locked VCSELs," in Conference Digest of IEEE 20th International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New York, 2006), pp.125-126.
    [CrossRef]
  11. E. Wong, X. Zhao, C. J. Chang-Hasnain, W. Hofmann, and M. C. Amann, "Uncooled, optical injection-locked 1.55 ?m VCSELs for upstream transmitters in WDM-PONs," presented at Optical Fiber Communications Conference, Anaheim, California, Postdeadline paper PD50, 5-10 Mar. 2006.
    [PubMed]

2006 (2)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Technol. 54, 788-796 (2006).Q3
[CrossRef]

H. Su and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

2005 (1)

2003 (2)

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).Q2
[CrossRef]

1996 (1)

A. C. Bordonalli, C. Walton, and A. J. Seeds, "High-performance homodyne optical injection phase- lock loop using wide-linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 8, 1217 (1996).
[CrossRef]

1990 (1)

H. Nakajima, "Demodulation of multi-gigahertz optical signal in an injection-locked distributed feedback laser oscillator," IEE Electron. Lett. 26, 1129-1131 (1990).Q1
[CrossRef]

1980 (1)

S. Kobayashi and T. Kimura, "Injection locking characteristics of an AlGaAs semiconductor laser," IEEE J. Quantum Electron. 16, 915-917 (1980).
[CrossRef]

Amann, M.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Bohm, G.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Bordonalli, A. C.

A. C. Bordonalli, C. Walton, and A. J. Seeds, "High-performance homodyne optical injection phase- lock loop using wide-linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 8, 1217 (1996).
[CrossRef]

Chang, C. H.

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).Q2
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Technol. 54, 788-796 (2006).Q3
[CrossRef]

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).Q2
[CrossRef]

Chrostowski, L.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Technol. 54, 788-796 (2006).Q3
[CrossRef]

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).Q2
[CrossRef]

Chuang, S. L.

H. Su and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Furfanger, M.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Hemmer, P.

Hofmann, W.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Kimura, T.

S. Kobayashi and T. Kimura, "Injection locking characteristics of an AlGaAs semiconductor laser," IEEE J. Quantum Electron. 16, 915-917 (1980).
[CrossRef]

Kobayashi, S.

S. Kobayashi and T. Kimura, "Injection locking characteristics of an AlGaAs semiconductor laser," IEEE J. Quantum Electron. 16, 915-917 (1980).
[CrossRef]

Kohler, F.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Lauer, C.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Maute, M.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Nakajima, H.

H. Nakajima, "Demodulation of multi-gigahertz optical signal in an injection-locked distributed feedback laser oscillator," IEE Electron. Lett. 26, 1129-1131 (1990).Q1
[CrossRef]

Ortsiefer, M.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Palinginis, P.

Pesala, B.

Rosskopf, J.

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

Seeds, A. J.

A. C. Bordonalli, C. Walton, and A. J. Seeds, "High-performance homodyne optical injection phase- lock loop using wide-linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 8, 1217 (1996).
[CrossRef]

Su, H.

H. Su and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Walton, C.

A. C. Bordonalli, C. Walton, and A. J. Seeds, "High-performance homodyne optical injection phase- lock loop using wide-linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 8, 1217 (1996).
[CrossRef]

Zhao, X.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Technol. 54, 788-796 (2006).Q3
[CrossRef]

X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005)
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. Su and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Appl. Phys. Lett. 88, 061102 (2006).
[CrossRef]

Electron. Lett. (1)

M. Ortsiefer, M. Furfanger, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute, W. Hofmann, M. Amann, "Singlemode 1.55 µm VCSELs with low threshold and high output power," Electron. Lett. 39, 1731 (2003).
[CrossRef]

IEE Electron. Lett. (1)

H. Nakajima, "Demodulation of multi-gigahertz optical signal in an injection-locked distributed feedback laser oscillator," IEE Electron. Lett. 26, 1129-1131 (1990).Q1
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi and T. Kimura, "Injection locking characteristics of an AlGaAs semiconductor laser," IEEE J. Quantum Electron. 16, 915-917 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. C. Bordonalli, C. Walton, and A. J. Seeds, "High-performance homodyne optical injection phase- lock loop using wide-linewidth semiconductor lasers," IEEE Photon. Technol. Lett. 8, 1217 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Technol. 54, 788-796 (2006).Q3
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).Q2
[CrossRef]

Opt. Express (1)

Other (3)

B. Pesala, Z. Chen, and C. Chang-Hasnain, "Tunable pulse delay demonstration using four-wave mixing in semiconductor optical amplifiers," presented at OSA Topical Meeting of Slow and Fast Light, Washington, DC, 23-26 July 2006.

X. Zhao, C. Chang-Hasnain, W. Hofmann and M. C. Amann, "Modulation efficiency enhancement of 1.55-?m injection-locked VCSELs," in Conference Digest of IEEE 20th International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New York, 2006), pp.125-126.
[CrossRef]

E. Wong, X. Zhao, C. J. Chang-Hasnain, W. Hofmann, and M. C. Amann, "Uncooled, optical injection-locked 1.55 ?m VCSELs for upstream transmitters in WDM-PONs," presented at Optical Fiber Communications Conference, Anaheim, California, Postdeadline paper PD50, 5-10 Mar. 2006.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental Setup (PM: Polarization Maintaining, EDFA: Erbium-Doped Fiber Amplifier, OSA: Optical Spectrum Analyzer)

Fig. 2.
Fig. 2.

(a). Raw amplitude response of a modulated-master OIL VCSEL under a fixed injection power at various detuning values.

Fig. 2.
Fig. 2.

(b). Calibrated amplitude response of a modulated-master OIL VCSEL under a fixed injection power at various detuning values.

Fig. 3.
Fig. 3.

Phase change response of a modulated-master OIL VCSEL under a fixed injection power at various detuning values. For a bandwidth of ~2 GHz centered at fc , the slope dϕ/dω, equivalent to the delay time τ for each detuning, changes from -0.2 ns to 0.2 ns, representing slow and fast light regimes.

Fig. 4.
Fig. 4.

Amplitude and phase change response of a modulated-master OIL VCSEL at a fixed detuning but at three different injection power levels. RF gain and phase change is possible for even higher frequencies with higher injection power levels.

Fig. 5.
Fig. 5.

(a). Phase change response at two different detuning values with single-tone modulation frequencies indicated.

Fig. 5.
Fig. 5.

(b). Time-domain traces at two detuning conditions showing both positive and negative phase change at three single-tone modulating frequencies.

Fig. 6.
Fig. 6.

Optical spectrum of modulated-master OIL laser used to explain the RF gain.

Fig. 7.(a).
Fig. 7.(a).

VCSEL amplifier model used to perform simulations.

Fig. 7.(b).
Fig. 7.(b).

Simulated relative intensity of the output of a probe beam incident on a VCSEL biased below threshold (VCSEL amplifier) at different material gain levels.

Fig. 7.(c).
Fig. 7.(c).

Simulated phase change of the output of a probe beam incident on a VCSEL biased below threshold (VCSEL amplifier) at different material gain levels.

Tables (2)

Tables Icon

Table 1. Amplitude and phase change frequency response of different modulated-master OIL VCSELs.

Tables Icon

Table 2. Amplitude and phase change frequency response at various detuning values using VCSEL 4 as master and VCSEL 5 as slave at three different power levels.

Metrics