Abstract

A continuously tunable optofluidic distributed feedback (DFB) dye laser was demonstrated on a monolithic replica molded poly(dimethylsiloxane) (PDMS) chip. The optical feedback was provided by a phase-shifted higher order Bragg grating embedded in the liquid core of a single mode buried channel waveguide. Due to the soft elastomeric nature of PDMS, the laser frequency could be tuned by mechanically stretching the grating period. In principle, the mechanical tuning range is only limited by the gain bandwidth. A tuning range of nearly 60nm was demonstrated from a single dye laser chip by combining two common dye molecules Rhodamine 6G and Rhodamine 101. Single-mode operation was maintained with less than 0.1nm linewidth. Because of the higher order grating, a single laser, when operated with different dye solutions, can provide tunable light output covering the entire spectrum from near UV to near IR in which efficient laser dyes are available. An array of five DFB dye lasers with different grating periods was also demonstrated on a chip. Such tunable integrated laser arrays are expected to become key components in inexpensive advanced spectroscopy chips.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
    [CrossRef]
  2. D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
    [CrossRef]
  3. J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
    [CrossRef]
  4. B. Bilenberg, B. Helbo, J.P. Kutter and A. Kristensen, "Tunable Microfluidic Dye Laser," Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206-209 (2003).
  5. D. Psaltis, S.R. Quake and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006).
    [CrossRef] [PubMed]
  6. Z. Li, Z. Zhang, T. Emery, A. Scherer and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
    [CrossRef] [PubMed]
  7. A. Yariv, Optical Electronics in Modern Communications (Oxford, New York, 1997).
  8. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
    [CrossRef]
  9. L.A. Wellerbrophy and D.G. Hall, "Analysis of wave-guide gratings - application of Rouard’s method," J. Opt. Soc. Am. A 2,863-871 (1985).
    [CrossRef]
  10. C.V. Shank, J.E. Bjorkholm and H. Kogelnik, "Tunable distributed-feedback dye laser," App. Phys. Lett. 18, 395-396 (1971).
    [CrossRef]
  11. J.C. McDonald and G.M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
    [CrossRef] [PubMed]
  12. W.T. Silfvast, Laser Fundamentals (Cambridge, Cambridge, 2004).
  13. Y. Oki, S. Miyamoto, M. Maeda and N. J. Vasa, "Multiwavelength distributed-feedback dye laser array and its application to spectroscopy," Opt. Lett. 27, 1220-1222 (2002).
    [CrossRef]

2006 (2)

D. Psaltis, S.R. Quake and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

2005 (2)

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

2002 (2)

Y. Oki, S. Miyamoto, M. Maeda and N. J. Vasa, "Multiwavelength distributed-feedback dye laser array and its application to spectroscopy," Opt. Lett. 27, 1220-1222 (2002).
[CrossRef]

J.C. McDonald and G.M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

2000 (1)

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

1985 (1)

1971 (1)

C.V. Shank, J.E. Bjorkholm and H. Kogelnik, "Tunable distributed-feedback dye laser," App. Phys. Lett. 18, 395-396 (1971).
[CrossRef]

Bawendi, M.G.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Belotti, M.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Bjorkholm, J.E.

C.V. Shank, J.E. Bjorkholm and H. Kogelnik, "Tunable distributed-feedback dye laser," App. Phys. Lett. 18, 395-396 (1971).
[CrossRef]

Chan, Y.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Chen, Y.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Chou, H.P.

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Conroy, R.S.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Emery, T.

Galas, J.C.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Hall, D.G.

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Kogelnik, H.

C.V. Shank, J.E. Bjorkholm and H. Kogelnik, "Tunable distributed-feedback dye laser," App. Phys. Lett. 18, 395-396 (1971).
[CrossRef]

Kou, Q.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Kristensen, A.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Li, Z.

Maeda, M.

Mayers, B.T.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

McDonald, J.C.

J.C. McDonald and G.M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

Miyamoto, S.

Nocera, D.G.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Oki, Y.

Psaltis, D.

Z. Li, Z. Zhang, T. Emery, A. Scherer and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

D. Psaltis, S.R. Quake and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006).
[CrossRef] [PubMed]

Quake, S.R.

D. Psaltis, S.R. Quake and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006).
[CrossRef] [PubMed]

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Scherer, A.

Z. Li, Z. Zhang, T. Emery, A. Scherer and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
[CrossRef] [PubMed]

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Shank, C.V.

C.V. Shank, J.E. Bjorkholm and H. Kogelnik, "Tunable distributed-feedback dye laser," App. Phys. Lett. 18, 395-396 (1971).
[CrossRef]

Snee, P.T.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Thorsen, T.

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Torres, J.

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

Unger, M.A.

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Vasa, N. J.

Vezenov, D.V.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Wellerbrophy, L.A.

Whitesides, G.M.

J.C. McDonald and G.M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

Witesides, G.M.

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

Yang, C.

D. Psaltis, S.R. Quake and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006).
[CrossRef] [PubMed]

Zhang, Z.

Acc. Chem. Res. (1)

J.C. McDonald and G.M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002).
[CrossRef] [PubMed]

App. Phys. Lett. (2)

C.V. Shank, J.E. Bjorkholm and H. Kogelnik, "Tunable distributed-feedback dye laser," App. Phys. Lett. 18, 395-396 (1971).
[CrossRef]

J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," App. Phys. Lett. 86, 264101 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Witesides, P.T. Snee, Y. Chan, D.G. Nocera, and M.G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127(25), 8952-8953 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

D. Psaltis, S.R. Quake and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Other (3)

W.T. Silfvast, Laser Fundamentals (Cambridge, Cambridge, 2004).

A. Yariv, Optical Electronics in Modern Communications (Oxford, New York, 1997).

B. Bilenberg, B. Helbo, J.P. Kutter and A. Kristensen, "Tunable Microfluidic Dye Laser," Proceedings of the 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Transducers, 206-209 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a mechanically tunable optofluidic DFB dye laser chip. The upper inset shows an actual monolithic PDMS laser chip. The lower inset is an optical micrograph of the central phase-shifted region of the laser cavity. A Bragg grating with 3080nm period is embedded in a 3μm wide microfluidic channel. The channel height is 2μm. The size of the PDMS posts is about 1.28μm×1.8μm inferred from the optical micrograph. The central larger PDMS post introduces an effective π/2 phase shift to ensure single wavelength lasing. The movement of the translation stage deforms the chip which causes the grating period to change.

Fig. 2.
Fig. 2.

Simulated reflectivity spectrum of a π/2 phase shifted higher order DFB structure. The parameters used are given in the main text. Also shown are the normalized measured fluorescence spectra of Rh6G and Rh101 solutions used in the lasing experiment.

Fig. 3.
Fig. 3.

Upper: normalized laser output of the mechanically tunable optofluidic DFB dye laser. Different peaks correspond to different grating periods. The measured laser linewidth is less than 0.1nm throughout the tuning range. Lower: lasing wavelength versus the measured chip deformation. The points are the experimental data and the curve is the linear fit. The achieved single-mode tuning range for Rh6G is from 565nm to 594nm and is from 613nm to 638nm for Rh101.

Fig. 4.
Fig. 4.

Left: optical micrograph of an integrated array of five optofluidic DFB dye lasers. The grating period of each laser is given on the left. Right: normalized laser output of the array using Rh6G dye solution as the gain medium.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m λ m = 2 n eff Λ

Metrics