Abstract

Using a 14-mm thick volume Bragg grating, spectral bandwidth of a cw-operated diode laser array is narrowed to 7 GHz (FWHM). Total output power reaches 13.5 W cw, of which 86% is in the 7-GHz band. With such a narrow bandwidth, it is possible to temperature tune laser frequency across O2 X3∏ → b1Σ+ absorption line at 763.8 nm, efficiently generating O2(1∆) molecules.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating

B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban
Opt. Lett. 31(9) 1253-1255 (2006)

Volume Bragg grating external cavities for the passive phase locking of high-brightness diode laser arrays: theoretical and experimental study

David Pabœuf, Deepak Vijayakumar, Ole Bjarlin Jensen, Birgitte Thestrup, Jun Lim, Slawomir Sujecki, Eric Larkins, Gaëlle Lucas-Leclin, and Patrick Georges
J. Opt. Soc. Am. B 28(5) 1289-1299 (2011)

Spectral narrowing and stabilization of interband cascade laser by volume Bragg grating

George Venus, Vadim Smirnov, Oleksiy Mokhun, William W. Bewley, Charles D. Merritt, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Igor Vurgaftman, Jerry Meyer, Konstantin Vodopyanov, and Leonid Glebov
Appl. Opt. 55(1) 77-80 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Hidemi Tsuchida, “Tunable, narrow-linewidth output from an injection-locked high-power AlGaAs laser diode array,” Opt. Lett. 19, 1741 (1994).
    [Crossref] [PubMed]
  2. Stuart MacCormack, Jack Feinberg, and M. H. Garrett, “Injection locking a laser-diode array with a phase-conjugate beam,” Opt. Lett. 19, 120 (1994).
    [Crossref] [PubMed]
  3. B. Chann, I. Nelson, and T. G. Walker, “Frequency-narrowed external-cavity diode-laser-array bar,” Opt. Lett. 25, 1352 (2000).
    [Crossref]
  4. F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135 (2003).
    [Crossref]
  5. C. Moser and G. Steckman, “Filters to Bragg About,” Photonics Spectra, June 2005, p. 82.
  6. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum arrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29, 1891 (2004).
    [Crossref] [PubMed]
  7. Yujin Zheng and Hirofumi Kan “Effective bandwidth reduction for a high-power laser-diode array by an external-cavity technique,” Opt. Lett. 30, 2424 (2005).
    [Crossref] [PubMed]

2005 (2)

2004 (1)

2003 (1)

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135 (2003).
[Crossref]

2000 (1)

1994 (2)

Ban, V. S.

Chann, B.

Dolgy, S. V.

Downs, E.

Eichler, H. J.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135 (2003).
[Crossref]

Feinberg, Jack

Garrett, M. H.

Hermerschmidt, A.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135 (2003).
[Crossref]

Kan, Hirofumi

MacCormack, Stuart

Melnik, E. D.

Moser, C.

C. Moser and G. Steckman, “Filters to Bragg About,” Photonics Spectra, June 2005, p. 82.

Nelson, I.

Shaw, J.

Steckman, G.

C. Moser and G. Steckman, “Filters to Bragg About,” Photonics Spectra, June 2005, p. 82.

Tsuchida, Hidemi

Volodin, B. L.

Walker, T. G.

Wang, F.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “Narrow-bandwidth high-power output of a laser diode array with a simple external cavity,” Opt. Commun. 218, 135 (2003).
[Crossref]

Zheng, Yujin

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Structure of external-cavity diode laser array (ECDLA). A volume Bragg grating (VBG) is used to provide narrow-band optical feedback to a diode laser array (DLA). Between the VBG and DLA, a fast-axis collimating (FAC) microlens and a slow-axis collimating (SAC) microlens array are used for beam collimation. (a) and (b) are views into fast-axis (FA) plane and slow-axis (SA) plane, respectively.
Fig. 2.
Fig. 2. (a) Laser output measured by an optical spectrum analyzer. The red solid curve is with VBG and about 86% of total power is within the narrow-band emission near 764 nm; the green dotted curve is free-running without VBG. The DLA is operated at 40 A. (b) Optical power as a function of current. The red solid squares are the powers of VBG-narrowed DLA; the green hollow squares are the powers of free-running DLA.
Fig. 3.
Fig. 3. Transmitted ECDLA signal from a scanning Fabry-Perot interferometer. The interferometer has free spectral range (FSR) of 25 GHz and spectral resolution of 1 GHz. The ECDLA bandwidth is measured to be ~7 GHz FWHM.
Fig. 4.
Fig. 4. Temperature tuning characteristics of VBG-ECDLA. Linear fitting gives a tuning rate of 0.0064 nm/°C, or 3.3 GHz/°C.
Fig. 5.
Fig. 5. Experimental setup for pumping and detecting singlet delta oxygen. A fiber bundle collects fluorescence photons of SDO at 1270 nm measured by a spectrometer.
Fig. 6.
Fig. 6. (a) SDO fluorescence spectra at different VBG temperatures or laser frequencies. (b) The spectra peaks are plotted as a function of the VBG temperature or laser frequency detuning. The FWHM linewidth is about 3°C, equivalent to 10 GHz.

Metrics