Abstract

We experimentally measure and theoretically model the light transmission characteristics of subwavelength apertures. The characterization consists of translating a point source at varying vertical height and lateral displacement from the aperture and measuring the resulting transmission. We define the variation of the transmission with lateral source displacement as the collection mode point spread function (CPSF). This transmission geometry is particularly relevant to subwavelength aperture based imaging devices and enables determination of their resolution. This study shows that the achieved resolutions degrade as a function of sample height and that the behavior of sensor devices based on the use of apertures for detection is different from those devices where the apertures are used as light sources. In addition, we find that the measured CPSF is dependent on the collection numerical aperture (NA). Finally, we establish that resolution beyond the diffraction limit for a nominal optical wavelength of 650 nm and nominal medium refractive index of 1.5 is achievable with subwavelength aperture based devices when the aperture size is smaller than 225 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348, (2005).
    [Crossref]
  2. E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, (2005).
    [Crossref]
  3. X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322, (2003).
    [Crossref] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
    [Crossref] [PubMed]
  5. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651, (2004).
    [Crossref] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
    [Crossref]
  7. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
    [Crossref] [PubMed]
  8. J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. W. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044, (2005).
    [Crossref] [PubMed]
  9. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
    [Crossref]
  10. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
    [Crossref]
  11. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
    [Crossref]
  12. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
    [Crossref] [PubMed]
  13. J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
    [Crossref] [PubMed]
  14. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).
  15. T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems, San Diego: Academic Press, 1996.
  16. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proceedings of the National Academy of Sciences of the United States of America  102, 13081–13086, (2005).
  17. S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated-Emission -Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19, 780–782, (1994).
    [Crossref] [PubMed]
  18. D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
    [Crossref]
  19. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537, (1999).
    [Crossref]
  20. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
    [Crossref] [PubMed]
  21. D. Courjon, Near-field microscopy and near-field optics, London: Imperial College Press, 2003.
  22. S. Inoue and K. R. Spring, Video microscopy: the fundamentals, (2nd edition, New York : Plenum Press, 1997).
    [Crossref]
  23. J. W. Goodman, Introduction to Fourier optics, (3rd edition, New York : McGraw-Hill, 2004).
  24. L. G. Schulz and F. R. Tangherlini, “Optical Constants of Silver, Gold, Copper, and Aluminum .2. the Index of Refraction-N,” J. Opt. Soc. Am. 44, 362–368, (1954).
    [Crossref]
  25. L. G. Schulz, “The Optical Constants of Silver, Gold, Copper, and Aluminum .1. the Absorption Coefficient-K,” J. Opt. Soc. Am. 44, 357–362, (1954).
    [Crossref]
  26. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
    [Crossref]
  27. COMSOL Multiphysics 3.2 (2006), COMSOL Inc. (http://www.comsol.com/).
  28. N. N. Rao, Elements of engineering electromagnetics (6th edition, Upper Saddle River, N.J. : Pearson Prentice Hall, 2004.
  29. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 127, 363–379, (1996).
    [Crossref]
  30. J. Jin, The finite element method in electromagnetics (2nd edition, New York: Wiley, 2002.
  31. F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM Journal on Scientific Computing 19, 2061–2090, (1998).
    [Crossref]
  32. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
    [Crossref]

2006 (2)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

2005 (4)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proceedings of the National Academy of Sciences of the United States of America  102, 13081–13086, (2005).

E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348, (2005).
[Crossref]

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, (2005).
[Crossref]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. W. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044, (2005).
[Crossref] [PubMed]

2004 (3)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
[Crossref]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651, (2004).
[Crossref] [PubMed]

J. W. Goodman, Introduction to Fourier optics, (3rd edition, New York : McGraw-Hill, 2004).

2003 (3)

X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322, (2003).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

2001 (1)

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

1999 (3)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537, (1999).
[Crossref]

E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
[Crossref]

1998 (2)

F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM Journal on Scientific Computing 19, 2061–2090, (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

1996 (2)

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
[Crossref]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 127, 363–379, (1996).
[Crossref]

1994 (2)

S. W. Hell and J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated-Emission -Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19, 780–782, (1994).
[Crossref] [PubMed]

D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
[Crossref]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

1954 (2)

Akhremitchev, B. B.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Austin, R.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Bain, J. A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Bakajin, O.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Baldwin, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Berenger, J. P.

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 127, 363–379, (1996).
[Crossref]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

Bonod, N.

E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348, (2005).
[Crossref]

Boyer, P.

E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348, (2005).
[Crossref]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
[Crossref]

Chan, E.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Chan, S. S.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Chen, F.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Chichester, R.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Chou, C. F.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Collino, F.

F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM Journal on Scientific Computing 19, 2061–2090, (1998).
[Crossref]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

Corle, T. R.

T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems, San Diego: Academic Press, 1996.

Courjon, D.

D. Courjon, Near-field microscopy and near-field optics, London: Imperial College Press, 2003.

Cox, E. C.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

Dhar, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Dintinger, J.

Duke, T.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Ebbesen, T. W.

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. W. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044, (2005).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Fann, W.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

Gedney, S. D.

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics, (3rd edition, New York : McGraw-Hill, 2004).

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
[Crossref]

Grupp, E.

E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proceedings of the National Academy of Sciences of the United States of America  102, 13081–13086, (2005).

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

Hell, S. W.

Heng, X.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Hesselink, L.

Hobson, W. S.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Hopkins, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Inoue, S.

S. Inoue and K. R. Spring, Video microscopy: the fundamentals, (2nd edition, New York : Plenum Press, 1997).
[Crossref]

Itagi, A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Jin, E. X.

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, (2005).
[Crossref]

Jin, J.

J. Jin, The finite element method in electromagnetics (2nd edition, New York: Wiley, 2002.

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
[Crossref]

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537, (1999).
[Crossref]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems, San Diego: Academic Press, 1996.

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
[Crossref]

Lenne, P. F.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651, (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

Liou, L.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Lopata, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

Monk, P.

F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM Journal on Scientific Computing 19, 2061–2090, (1998).
[Crossref]

Moskovits, M.

D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
[Crossref]

Murray, C. A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Neviere, M.

E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348, (2005).
[Crossref]

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537, (1999).
[Crossref]

Othonos, A.

D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
[Crossref]

Partovi, A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Peale, D.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Popov, E.

Psaltis, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Rao, N. N.

N. N. Rao, Elements of engineering electromagnetics (6th edition, Upper Saddle River, N.J. : Pearson Prentice Hall, 2004.

Rigneault, H.

Schlesinger, T. E.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

Schulz, L. G.

Shi, X. L.

Spring, K. R.

S. Inoue and K. R. Spring, Video microscopy: the fundamentals, (2nd edition, New York : Plenum Press, 1997).
[Crossref]

Stancil, D. D.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Stebounova, L.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Sternberg, P. W.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

Tangherlini, F. R.

Tegenfeldt, J. O.

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651, (2004).
[Crossref] [PubMed]

E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

Thornton, R. L.

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

Tsai, D. P.

D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
[Crossref]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

Uttamchandani, D.

D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
[Crossref]

Walker, G. C.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

Wenger, J.

Wichmann, J.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

Wuttig, M.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Wynn, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Xu, X. F.

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, (2005).
[Crossref]

Yang, C.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Yaqoob, Z.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

Yeh, J. H. J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Zydzik, G.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

Adv. Mater. (1)

E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862, (1999).
[Crossref]

Appl. Phys. Lett. (4)

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86, (2005).
[Crossref]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517, (1999).
[Crossref]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83, 3245–3247, (2003).
[Crossref]

D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman-Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Appl. Phys. Lett. 64, 1768–1770, (1994).
[Crossref]

IEEE Trans. Antennas Propag. (1)

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639, (1996).
[Crossref]

J. Comp. Phys. (1)

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 127, 363–379, (1996).
[Crossref]

J. Opt. Soc. Am. (2)

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20, 4813–4815, (2004).
[Crossref]

Nano Lett. (1)

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360, (2006).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669, (1998).
[Crossref]

Opt. Commun. (1)

E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348, (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving molecules,” Phys. Rev. Lett. 86, 1378–1381, (2001).
[Crossref] [PubMed]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537, (1999).
[Crossref]

Science (3)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science 251, 1468–1470, (1991).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822, (2002).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686, (2003).
[Crossref] [PubMed]

SIAM Journal on Scientific Computing (1)

F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM Journal on Scientific Computing 19, 2061–2090, (1998).
[Crossref]

Other (9)

J. Jin, The finite element method in electromagnetics (2nd edition, New York: Wiley, 2002.

COMSOL Multiphysics 3.2 (2006), COMSOL Inc. (http://www.comsol.com/).

N. N. Rao, Elements of engineering electromagnetics (6th edition, Upper Saddle River, N.J. : Pearson Prentice Hall, 2004.

D. Courjon, Near-field microscopy and near-field optics, London: Imperial College Press, 2003.

S. Inoue and K. R. Spring, Video microscopy: the fundamentals, (2nd edition, New York : Plenum Press, 1997).
[Crossref]

J. W. Goodman, Introduction to Fourier optics, (3rd edition, New York : McGraw-Hill, 2004).

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip  6, 1274–1276, (2006).

T. R. Corle and G. S. Kino, Confocal scanning optical microscopy and related imaging systems, San Diego: Academic Press, 1996.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proceedings of the National Academy of Sciences of the United States of America  102, 13081–13086, (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Two schemes of subwavelength aperture based imaging devices (ABIDs): (a) type-I, (b) type-II. H: vertical separation of point from aperture. x: the lateral displacement of point detector/source from the aperture.

Fig. 2.
Fig. 2.

(a) Illustration of the experimental scheme. The NSOM tip scans over the subwavelength aperture (diameter: D) milled in a thin aluminum film (thickness: t) at a constant height (H). Substrate is an ultra-clean quartz wafer. x: the lateral distance between the NSOM tip and the aperture center. (b) SEM image of a FIB milled aperture; D=100 nm. (c) SEM image of a NSOM tip with a diameter of ~100 nm.

Fig. 3.
Fig. 3.

NSOM measurements of a subwavelength aperture (D= 300 nm). (a1) An illustration of the experimental scheme, with the NSOM tip engaged in the near field; (a2) the collected NSOM image with the experimental geometry shown in (a1); (a3) the CPSF curve extracted from the NSOM image shown in (a2). (b1) - (b3) The corresponding geometry and data with H = 460 nm. (c1) - (c3) The corresponding geometry and data with H = 1150 nm.

Fig. 4.
Fig. 4.

Schematic of the simulation geometry. The arrows indicate the movement of the light source in the simulation space. The detection plane is 0.2μm underneath the subwavelength aperture. H1 = 0.2μm (distance between metal’s bottom surface and the detector plane). D, H and x are defined the same way as those in Fig. 2.

Fig. 5.
Fig. 5.

Examples of the simulation results with all three polarizations considered. (a) Cross sectional plot of power flow (|S|), time averaged; H=50 nm, D= 300 nm, x= 0. (c) Plot of |S| on the detector plane. (b) and (d) show the corresponding plots when x is changed to x = -0.15 μm.

Fig. 6.
Fig. 6.

(a)-(c) Simulation generated CPSF plots for source at different heights from the aperture. The blue cross and the red cross indicate the transmissions corresponding to the point source geometries in Fig. 5(a) and Fig. 5(b), respectively.

Fig. 7.
Fig. 7.

(log-log scale): CPSF’s FWHM versus the gap height (H) for a range of aperture sizes (realistic NSOM tip scenario). The lines represent simulation results and the circles represent experimental data. To match with the experimental conditions, only the line sources at lateral directions (i.e. x and y) were considered. The simulation model was adapted to match with the NSOM radiation characteristics. The collection N.A. for the transmission is effectively unity.

Fig. 8.
Fig. 8.

(log-log scale): CPSF’s FWHM versus the gap height (H) for a range of aperture sizes (effective point source scenario). The lines represent simulation results and the circles represent experimental data. Line sources of all three orientations were considered - the light source is modeled as an effective isotropic point source. Black line: the far field trend of large apertures (FWHM ~ 1.53 H). The collection N.A. for the transmission is effectively unity.

Fig. 9.
Fig. 9.

(a), (b) 2D cross sectional plots of power flow, |S| for two different lateral displacements. The source lateral displacement is 0 in (a) and -500nm in (b). Aperture size is 300 nm; H= 1150 nm. (c) Light collection geometry in the experiment showing that the effective numerical aperture is reduced by the presence of the quartz wafer. (d) Plots of the CPSFs from experiment (black) and simulation (red dashed). Effective NA =0.267. H= 1150 nm. (e) Corresponding plots in the case where effective NA = 0.4. (f) Simulation CPSF curve with a perfect collection NA, i.e. NA=1.0. (Note that FWHMs indicated in figure (d) and (e) are obtained from experimental results. All the experimental FWHMs are summarized in Table 2.)

Fig. 10.
Fig. 10.

(a), (b) 2D cross sectional plots of power flow, |S| for two different lateral displacements: 0 nm in (a) and -500nm in (b). Aperture size is 300 nm; H= 1150 nm. (c) Plots of the CPSFs from experiment (black) and simulation (red dashed). Effective NA= 0.267. H= 1150 nm. (d) Corresponding plots in the case where effective NA = 0.4. (e) Simulation CPSF curve with a perfect collection NA, i.e. NA=1.0. (Note that FWHMs indicated in figure (c) and (d) are obtained from experimental results. All the experimental FWHMs are summarized in Table 2.)

Fig. 11.
Fig. 11.

Comparison of type II ABIDs with conventional microscopes. Blue asterisk: Near field resolution of type II ABIDs vs. D (simulation). Simulation assumed an effective isotropic point source. Blue dashed line: linear fit of the resolution limit of type II ABIDs. Red error bars: Near field resolution of type II ABIDs based on our experiment. Black dashed line: diffraction limited resolution of an ideal conventional microscope.

Tables (2)

Tables Icon

Table 1. Depth of field (DOF) of the subwavelength apertures

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a z = 1 j ( z z 0 L ) m δ
T = S A = S ( x , H ) cos ( θ ) A = S ( x , H ) A H 2 x 2 + H 2 A x 2 H 2 H 2 x 2 + H 2
FWHM = 2 2 1 . H 1.53 H
FWHM = 1.03 × λ D · H

Metrics