Abstract

We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on singlemode As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n2) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As2Se3 based devices show considerable promise for radically integrated nonlinear signal processing devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zang, J. P. Jue, and B. Mukerjee, "A review of routing and wavelength assignment approaches for wavelength-routed Optical WDM Networks," in Optical Networks Magazine(2000), pp. 47-60.
  2. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
    [CrossRef]
  3. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3,142-148 (1997).
    [CrossRef]
  4. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
    [CrossRef]
  5. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]
  6. B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
    [CrossRef]
  7. I. D. Aggarwal and J. S. Sanghera, "Development and applications of chalcogenide glass optical fibers at NRL," J. Optoelectron. Adv. Mater. 4, 665-678 (2002).
  8. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005).
    [CrossRef] [PubMed]
  9. P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000).
    [CrossRef]
  10. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
    [CrossRef]
  11. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef] [PubMed]
  12. Y. K. Lize, E. C. Magi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004).
    [CrossRef] [PubMed]
  13. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
    [CrossRef]
  14. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  15. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
    [CrossRef]
  16. G. Burdge, S. U. Alam, A. Grudinin, M. Durkin, M. Ibsen, I. Khrushchev, and I. White, "Ultrafast intensity modulation by Raman gain for all-optical in-fiber processing," Opt. Lett. 23, 606-608 (1998).
    [CrossRef]
  17. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "2-Photon Absorption as a Limitation to All-Optical Switching," Opt. Lett. 14, 1140-1142 (1989).
    [CrossRef] [PubMed]
  18. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
    [CrossRef]

2006 (2)

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

2005 (4)

2004 (2)

2003 (1)

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

2002 (1)

I. D. Aggarwal and J. S. Sanghera, "Development and applications of chalcogenide glass optical fibers at NRL," J. Optoelectron. Adv. Mater. 4, 665-678 (2002).

2000 (4)

P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000).
[CrossRef]

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
[CrossRef]

1998 (1)

1997 (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3,142-148 (1997).
[CrossRef]

1989 (1)

Abedin, K. S.

Aggarwal, I. D.

Alam, S. U.

Andrejco, M. J.

Asobe, M.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3,142-148 (1997).
[CrossRef]

Belardi, W.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

Blumenthal, D. J.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
[CrossRef]

P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000).
[CrossRef]

Bolger, J. A.

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Burdge, G.

Cheong, S. W.

Delong, K. W.

Durkin, M.

Eggleton, B. J.

Finsterbusch, K.

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

Fu, L. B.

Grudinin, A.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Hwang, H. Y.

Ibsen, M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

G. Burdge, S. U. Alam, A. Grudinin, M. Durkin, M. Ibsen, I. Khrushchev, and I. White, "Ultrafast intensity modulation by Raman gain for all-optical in-fiber processing," Opt. Lett. 23, 606-608 (1998).
[CrossRef]

Jarvis, R.

Katsufuji, T.

Khrushchev, I.

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

Lamont, M. R. E.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

Lenz, G.

Li, W. T.

Lines, M. E.

Littler, I. C. M.

Lize, Y. K.

Luther-Davies, B.

Madsen, N.

Magi, E. C.

Mizrahi, V.

Monro, T. M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Moss, D. J.

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

Ohlen, P.

P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000).
[CrossRef]

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Olsson, B. E.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
[CrossRef]

P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000).
[CrossRef]

Rau, L.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Richardson, D. J.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Rochette, M.

Rode, A.

Ruan, Y. L.

Saifi, M. A.

Sanghera, J. S.

Shokooh-Saremi, M.

Slusher, R. E.

Spalter, S.

Stegeman, G. I.

Steinvurzel, P.

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

Ta'eed, V. G.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

White, I.

Yusoff, Z.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

Zimmermann, J.

Electron. Lett. (3)

H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, "Development and applications of chalcogenide glass optical fibers at NRL," J. Optoelectron. Adv. Mater. 4, 665-678 (2002).

Opt. Express (4)

Opt. Fiber Technol. (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3,142-148 (1997).
[CrossRef]

Opt. Lett. (4)

Other (1)

H. Zang, J. P. Jue, and B. Mukerjee, "A review of routing and wavelength assignment approaches for wavelength-routed Optical WDM Networks," in Optical Networks Magazine(2000), pp. 47-60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of XPM wavelength conversion. Amplified pulsed pump signal (at λ1) imposes a nonlinear frequency chirp onto a co-propagating wavelength tunable CW probe (at λ2) through the nonlinear refractive index. Filtering one of the XPM generated sidebands results in wavelength conversion (to λ2+Δ).

Fig. 2.
Fig. 2.

System setup for demonstrating wavelength conversion. CLK: 10 GHz actively mode locked, fiber laser, FBG notch: fiber Bragg grating notch filter, MZ: Mach-Zehnder modulator, PC: polarization controlled, PRBS: pseudo-random bit sequence, TBF: tunable band pass filter.

Fig. 3.
Fig. 3.

Spectra from As2S3 fiber after XPM has broadened the spectra of three different CW probe wavelengths. Resolution bandwidth = 60 pm.

Fig. 4.
Fig. 4.

BER vs. received optical power showing ~1.4 dB penalty at BER = 10-9 for wavelength conversion over 10 nm compared to the back-to-back (B2B) system measurement. For clarity, the linear regression for conversion at 1555.57 nm and 1559.61 nm are not shown here. Inset shows eye diagrams (10 ps per division) for B2B and converted pulses.

Fig. 5.
Fig. 5.

(a) Analysis of intensity required to generate a nonlinear phase shift of π by XPM vs. pump-probe wavelength offset for varying FOM. (b) The gradient of (a) vs. FOM. The dotted line designates the FOM = 1 threshold required for efficient device operation.

Tables (1)

Tables Icon

Table 1. Comparison of optical parameters of Silica DSF, Bi2O3 fiber and As2S3 fiber at 1550 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = α β [ exp ( φ NL 2 π FOM ) 1 ] [ 1 exp ( α L W ) ]

Metrics