Abstract

Optical fiber ring circuits constructed with frequency shifters and EDFAs are applicable to pulsed lightwave frequency sweepers, wavelength converters, and optical packet buffers. The salient criterion for those applications is how many times the optical pulse can circle the ring. Optical band-pass filters in the ring can serve an important role for pulse circulation because the filter determines the gain bandwidth at every circulation under the condition of signal wavelength shift. This paper clarifies the effects of optical filter response on pulse circulation in the ring through numerical simulation of the EDFA dynamic model, considering the gain spectrum.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband lightwave synthesized frequency sweeper using self-induced auto-tracking filter

Zhaoying Wang, Shiyuan Liu, Sha Luo, Quan Yuan, Rui Ma, Chunfeng Ge, and Tianxin Yang
Opt. Express 23(17) 22134-22140 (2015)

Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: l. Experiment

Kaoru Shimizu, Tsuneo Horiguchi, and Yahei Koyamada
Appl. Opt. 32(33) 6718-6726 (1993)

References

  • View by:
  • |
  • |
  • |

  1. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: I. Experiment,” Appl. Opt. 32, 6718–6726 (1993).
    [Crossref] [PubMed]
  2. K. Aida and K. Nakagawa, “Time shared lightwave reference frequency distribution for photonics networks,” J. Lightwave Technol. 14, 1153–1160 (1996).
    [Crossref]
  3. K. Takano, K. Nakagawa, and H. Ito, “An optical tunable delay line using fiber ring with AO frequency shifters and EDFAs,” presented at the 9-th International Symposium on Contemporary Photonics Technology, (Tokyo, 2006), G-3, pp. 153–154, http://www.cpt-symposium.com/_cpt2006/index.html.
  4. T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
    [Crossref]
  5. E. Yamazaki, A. Takada, and J. H. Park, “Wavelength converter operating strictly on optical frequency grid,” in Proceedings of the 2003 IEICE General Conference, B-10-53, p. 483.
  6. H. Takesue and T. Horiguchi, “Chromatic dispersion measurement of optical components using lightwave synthesized frequency sweeper,” J. Lightwave Technol. 20, 625–633 (2002).
    [Crossref]
  7. T. Kurashima, M. Tateda, T. Horiguchi, and Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
    [Crossref]
  8. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: II Theoretical analysis,” Appl. Opt. 33, 3209–3219 (1994).
    [Crossref] [PubMed]
  9. K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).
  10. K. Motoshima, N. Suzuki, K. Shimizu, K. Kasahara, T. Kitayama, and T. Yasui, “A channel-number insensitive Erbium-doped fiber amplifier with automatic gain and power regulation function,” J. Lightwave Technol. 19, 1759–1767 (2001).
    [Crossref]
  11. T. Tokura, J. Nakagawa, K. Motoshima, and T. Kitayama, “Quantitative analysis of optical surge propagation on transmission systems,” in Proceedings of the 1997 European Conference on Optical Communication, (1997), WE3.
  12. C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
    [Crossref]
  13. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
    [Crossref]

2002 (2)

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
[Crossref]

H. Takesue and T. Horiguchi, “Chromatic dispersion measurement of optical components using lightwave synthesized frequency sweeper,” J. Lightwave Technol. 20, 625–633 (2002).
[Crossref]

2001 (1)

1997 (2)

T. Kurashima, M. Tateda, T. Horiguchi, and Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[Crossref]

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

1996 (1)

K. Aida and K. Nakagawa, “Time shared lightwave reference frequency distribution for photonics networks,” J. Lightwave Technol. 14, 1153–1160 (1996).
[Crossref]

1994 (1)

1993 (1)

1991 (2)

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[Crossref]

Aida, K.

K. Aida and K. Nakagawa, “Time shared lightwave reference frequency distribution for photonics networks,” J. Lightwave Technol. 14, 1153–1160 (1996).
[Crossref]

Burrus, C. A.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

Desurvire, E.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[Crossref]

DiGiovanni, D. J.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

Dutta, N. K.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

Giles, C. R.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[Crossref]

Higuma, K.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
[Crossref]

Horiguchi, T.

Ito, H.

K. Takano, K. Nakagawa, and H. Ito, “An optical tunable delay line using fiber ring with AO frequency shifters and EDFAs,” presented at the 9-th International Symposium on Contemporary Photonics Technology, (Tokyo, 2006), G-3, pp. 153–154, http://www.cpt-symposium.com/_cpt2006/index.html.

Ito, K.

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

Izutsu, M.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
[Crossref]

Kasahara, K.

Kawanishi, T.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
[Crossref]

Kitayama, T.

K. Motoshima, N. Suzuki, K. Shimizu, K. Kasahara, T. Kitayama, and T. Yasui, “A channel-number insensitive Erbium-doped fiber amplifier with automatic gain and power regulation function,” J. Lightwave Technol. 19, 1759–1767 (2001).
[Crossref]

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

T. Tokura, J. Nakagawa, K. Motoshima, and T. Kitayama, “Quantitative analysis of optical surge propagation on transmission systems,” in Proceedings of the 1997 European Conference on Optical Communication, (1997), WE3.

Koyamada, Y.

Kurashima, T.

T. Kurashima, M. Tateda, T. Horiguchi, and Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[Crossref]

Mizuochi, T.

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

Motoshima, K.

K. Motoshima, N. Suzuki, K. Shimizu, K. Kasahara, T. Kitayama, and T. Yasui, “A channel-number insensitive Erbium-doped fiber amplifier with automatic gain and power regulation function,” J. Lightwave Technol. 19, 1759–1767 (2001).
[Crossref]

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

T. Tokura, J. Nakagawa, K. Motoshima, and T. Kitayama, “Quantitative analysis of optical surge propagation on transmission systems,” in Proceedings of the 1997 European Conference on Optical Communication, (1997), WE3.

Nakagawa, J.

T. Tokura, J. Nakagawa, K. Motoshima, and T. Kitayama, “Quantitative analysis of optical surge propagation on transmission systems,” in Proceedings of the 1997 European Conference on Optical Communication, (1997), WE3.

Nakagawa, K.

K. Aida and K. Nakagawa, “Time shared lightwave reference frequency distribution for photonics networks,” J. Lightwave Technol. 14, 1153–1160 (1996).
[Crossref]

K. Takano, K. Nakagawa, and H. Ito, “An optical tunable delay line using fiber ring with AO frequency shifters and EDFAs,” presented at the 9-th International Symposium on Contemporary Photonics Technology, (Tokyo, 2006), G-3, pp. 153–154, http://www.cpt-symposium.com/_cpt2006/index.html.

Oikawa, S.

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
[Crossref]

Park, J. H.

E. Yamazaki, A. Takada, and J. H. Park, “Wavelength converter operating strictly on optical frequency grid,” in Proceedings of the 2003 IEICE General Conference, B-10-53, p. 483.

Raybon, G.

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

Shimizu, K.

Suzuki, N.

Takada, A.

E. Yamazaki, A. Takada, and J. H. Park, “Wavelength converter operating strictly on optical frequency grid,” in Proceedings of the 2003 IEICE General Conference, B-10-53, p. 483.

Takano, K.

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

K. Takano, K. Nakagawa, and H. Ito, “An optical tunable delay line using fiber ring with AO frequency shifters and EDFAs,” presented at the 9-th International Symposium on Contemporary Photonics Technology, (Tokyo, 2006), G-3, pp. 153–154, http://www.cpt-symposium.com/_cpt2006/index.html.

Takesue, H.

Tateda, M.

T. Kurashima, M. Tateda, T. Horiguchi, and Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[Crossref]

Tokura, T.

T. Tokura, J. Nakagawa, K. Motoshima, and T. Kitayama, “Quantitative analysis of optical surge propagation on transmission systems,” in Proceedings of the 1997 European Conference on Optical Communication, (1997), WE3.

Yamazaki, E.

E. Yamazaki, A. Takada, and J. H. Park, “Wavelength converter operating strictly on optical frequency grid,” in Proceedings of the 2003 IEICE General Conference, B-10-53, p. 483.

Yasui, T.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (3)

T. Kawanishi, S. Oikawa, K. Higuma, and M. Izutsu, “Electrically tunable delay line using optical single-sideband modulator,” IEEE Photon. Technol. Lett. 14, 1454–1456 (2002).
[Crossref]

T. Kurashima, M. Tateda, T. Horiguchi, and Y. Koyamada, “Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state,” IEEE Photon. Technol. Lett. 9, 360–362 (1997).
[Crossref]

C. R. Giles, C. A. Burrus, D. J. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of Erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3, 363–365 (1991).
[Crossref]

IEICE Trans. Commun. (1)

K. Motoshima, K. Shimizu, K. Takano, T. Mizuochi, T. Kitayama, and K. Ito, “Automatic gain control of Erbium-doped fiber amplifiers for WDM transmission systems,” IEICE Trans. Commun. E80-B, 1311–1320 (1997).

J. Lightwave Technol. (4)

K. Motoshima, N. Suzuki, K. Shimizu, K. Kasahara, T. Kitayama, and T. Yasui, “A channel-number insensitive Erbium-doped fiber amplifier with automatic gain and power regulation function,” J. Lightwave Technol. 19, 1759–1767 (2001).
[Crossref]

K. Aida and K. Nakagawa, “Time shared lightwave reference frequency distribution for photonics networks,” J. Lightwave Technol. 14, 1153–1160 (1996).
[Crossref]

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9, 147–154 (1991).
[Crossref]

H. Takesue and T. Horiguchi, “Chromatic dispersion measurement of optical components using lightwave synthesized frequency sweeper,” J. Lightwave Technol. 20, 625–633 (2002).
[Crossref]

Other (3)

K. Takano, K. Nakagawa, and H. Ito, “An optical tunable delay line using fiber ring with AO frequency shifters and EDFAs,” presented at the 9-th International Symposium on Contemporary Photonics Technology, (Tokyo, 2006), G-3, pp. 153–154, http://www.cpt-symposium.com/_cpt2006/index.html.

E. Yamazaki, A. Takada, and J. H. Park, “Wavelength converter operating strictly on optical frequency grid,” in Proceedings of the 2003 IEICE General Conference, B-10-53, p. 483.

T. Tokura, J. Nakagawa, K. Motoshima, and T. Kitayama, “Quantitative analysis of optical surge propagation on transmission systems,” in Proceedings of the 1997 European Conference on Optical Communication, (1997), WE3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Ring configuration with a frequency shifter and an EDFA (a), and a timing chart for AOM, AOS and expected output pulse train (b).
Fig. 2.
Fig. 2. The ring output waveform from experimentation (b) and from simulation (c), when the input waveform is (a).
Fig. 3.
Fig. 3. Absorption and gain coefficients of EDF (a), EDFA gain and noise figure characteristics as a function of EDFA input power (1552.5 nm) (b).
Fig. 4.
Fig. 4. Output pulse train envelope response (a), and output spectra at circulation of 200, 400, 600, 800, and 900 (b).
Fig. 5.
Fig. 5. Circulation limit as a function of filter detuning (a), and output pulse train envelope response in the case of B = 15 nm (b).
Fig. 6.
Fig. 6. Output spectra at circulations of 100, 200, 300, and 400 (B = 25 nm, Δλd = 4.2 nm).
Fig. 7.
Fig. 7. Color contrast map for the circulation limit with respect to the filter bandwidth and detuning. The magenta line shows that the upper limit of circulation calculated from the overall loop gain is unity at the initial signal wavelength (F(λSIG ) = 1/Gmargin ).
Fig. 8.
Fig. 8. Maximum circulation limit and optimum detuning as a function of the filter bandwidth.
Fig. 9.
Fig. 9. Re-plot of the power envelope response for signal and ASE at early pulse circulation (a), dynamic EDFA gain response for the circulation (b) in the case of B = 15 nm.
Fig. 10.
Fig. 10. Super-Gaussian BPF transmittance with the FWHM of 5 nm.
Fig 11.
Fig 11. Maximum circulation limit (a), optimum detuning (b) as a function of filter bandwidth.

Tables (2)

Tables Icon

Table 1. Simulation conditions

Tables Icon

Table 2. Factor of the fitting line approximating the relation between optimum detuning and filter bandwidth, and calculated filter transmittance for the initial circulation signal from the factor.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P SIG ( n ) ( t , v SIG ( n ) ) = α ring F ( v SIG ( n ) ) G ( n ) ( t , v SIG ( n ) ) P SIG ( n 1 ) ( t , v SIG ( n 1 ) ) , and
v SIG ( n ) = v SIG ( n 1 ) + Δ v F S ,
P ASE ( n ) ( t , v ) = α ring F ( v ) { G ( n ) ( t , v ) P ASE ( n 1 ) ( t , v Δ v F S ) + S ( n ) ( t , v ) } ,
P z t v z = u { g ( v ) N 2 ( z , t ) α ( v ) N 1 z t } P z t v u l ( v ) P z t v
+ umh v g ( v ) Δ v N 2 ( z , t )
d d t [ N 1 z t N 2 z t ] = [ W 12 W 21 + A 21 W 12 ( W 21 + A 21 ) ] [ N 1 z t N 2 z t ] ,
W 12 = A 21 k α ( v k ) P ( v k ) P SAT ( v k ) ( α ( v k ) + g ( v k ) ) , and
W 21 = A 21 k g ( v k ) P ( v k ) P SAT ( v k ) ( α ( v k ) + g ( v k ) ) ,
F ( v ) = exp { 4 ln ( 2 ) ( v v 0 ) 2 / B 2 } ,
Δ v d = 1 2 log 2 F ( v SIG ( 0 ) ) B .
F ( v ) = exp { ln ( 2 ) [ 2 ( v v 0 ) / B ] 2 m } ;

Metrics